Concurrent exposure to heat shock and H7 synergizes to trigger breast cancer cell apoptosis while sparing normal cells

被引:2
作者
Xia, WL [1 ]
Hardy, L [1 ]
Liu, LH [1 ]
Zhao, SM [1 ]
Goodman, M [1 ]
Voellmy, R [1 ]
Spector, NL [1 ]
机构
[1] Univ Miami, Sch Med, Dept Med, Div Hematol Oncol, Miami, FL USA
关键词
apoptosis; breast cancer; heat shock; H7; kinase inhibition;
D O I
10.1023/A:1021895803424
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Most cancer therapies, including chemotherapy, kill tumor cells by inducing apoptosis. Consequently, the propensity of tumor cells to evade apoptotic signals contributes to therapeutic resistance. Here we show that breast cancer cells exhibiting a highly resistant phenotype undergo apoptosis when exposed to concurrent heat shock and H7, a potent serine/threonine kinase inhibitor. The anti-tumor effects of this combination are synergistic as neither treatment alone adversely affects breast cancer cell growth/survival. In contrast, non-malignant breast epithelial and hematopoietic progenitor cells are resistant to this combination therapy, thereby excluding non-specific cytotoxicity as the cause of tumor cell apoptosis. Heat or other cell stresses, including chemotherapy, preferentially enhance heat shock protein (hsp) synthesis, which serves to protect cells from potentially lethal consequences of heat shock stimuli. Ectopic overexpression of hsps in breast cancer cells protects against chemotherapy-induced apoptosis. Furthermore, increased hsps in primary breast cancers correlates with resistance to therapy and decreased survival. Stress-induced hsp synthesis is mediated by heat shock transcription factor 1 (HSF1). To simulate hsp overexpressing primary breast cancers, a number of breast cancer cell lines were transfected with HSF1d202-316, a constitutively activated form of HSF1 that leads to baseline overexpression of hsps in the absence of stress. Importantly, HSF1d202-316 transfected breast cancer cells undergo apoptosis following concurrent heat shock and H7. In light of its tumor selective activity against breast cancer cells that exhibit a highly resistant phenotype, concurrent H7 and heat shock warrants further investigation as a potential cancer therapy.
引用
收藏
页码:233 / 243
页数:11
相关论文
共 54 条
[1]   ABNORMAL PROTEINS SERVE AS EUKARYOTIC STRESS SIGNALS AND TRIGGER THE ACTIVATION OF HEAT-SHOCK GENES [J].
ANANTHAN, J ;
GOLDBERG, AL ;
VOELLMY, R .
SCIENCE, 1986, 232 (4749) :522-524
[2]   ACTIVATION OF HUMAN HEAT-SHOCK GENES IS ACCOMPANIED BY OLIGOMERIZATION, MODIFICATION, AND RAPID TRANSLOCATION OF HEAT-SHOCK TRANSCRIPTION FACTOR HSF1 [J].
BALER, R ;
DAHL, G ;
VOELLMY, R .
MOLECULAR AND CELLULAR BIOLOGY, 1993, 13 (04) :2486-2496
[3]  
Blanc C, 2000, CANCER RES, V60, P4386
[4]   BCL-X, A BCL-2-RELATED GENE THAT FUNCTIONS AS A DOMINANT REGULATOR OF APOPTOTIC CELL-DEATH [J].
BOISE, LH ;
GONZALEZGARCIA, M ;
POSTEMA, CE ;
DING, LY ;
LINDSTEN, T ;
TURKA, LA ;
MAO, XH ;
NUNEZ, G ;
THOMPSON, CB .
CELL, 1993, 74 (04) :597-608
[5]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[6]   Heat shock protein 72 modulates pathways of stress-induced apoptosis [J].
Buzzard, KA ;
Giaccia, AJ ;
Killender, M ;
Anderson, RL .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (27) :17147-17153
[7]   Conversion of Bcl-2 to a Bax-like death effector by caspases [J].
Cheng, EHY ;
Kirsch, DG ;
Clem, RJ ;
Ravi, R ;
Kastan, MB ;
Bedi, A ;
Ueno, K ;
Hardwick, JM .
SCIENCE, 1997, 278 (5345) :1966-1968
[8]   Extracellular protein kinase A as a cancer biomarker:: Its expression by tumor cells and reversal by a myristate-lacking Cα and RIIβ subunit overexpression [J].
Cho, YS ;
Park, YG ;
Lee, YN ;
Kim, MK ;
Bates, S ;
Tan, LZ ;
Cho-Chung, YS .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (02) :835-840
[9]   Transcriptional activity of heat shock factor 1 at 37 °C is repressed through phosphorylation on two distinct serine residues by glycogen synthase kinase 3α and protein kinases Cα, and Cζ [J].
Chu, BY ;
Zhong, R ;
Soncin, F ;
Stevenson, MA ;
Calderwood, SK .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (29) :18640-18646
[10]  
CIOCCA DR, 1992, CANCER RES, V52, P3648