Convergence of the Multidimensional Minimum Variance Spectral Estimator for Continuous and Mixed Spectra

被引:2
作者
Kay, Steven [1 ]
Pakula, Lewis [2 ]
机构
[1] Univ Rhode Isl, Dept Elect Comp & Biomed Engn, Kingston, RI 02881 USA
[2] Univ Rhode Isl, Dept Math, Kingston, RI 02881 USA
关键词
Signal resolution; signal detection;
D O I
10.1109/LSP.2009.2031715
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A proof of the pointwise convergence of the multidimensional minimum variance spectral estimator as the region of data support becomes infinite is given. It is shown that an octant is sufficient to ensure that the minimum variance spectral estimator will converge to the true power spectral density. The proof is valid for 1-D, multidimensional, continuous, and mixed spectra. Another useful result is that a normalized minimum variance spectral estimator can be defined to indicate sinusoidal power for processes with a mixed spectrum. Finally, upper and lower bounds on the continuous portion of the spectral estimate are given.
引用
收藏
页码:28 / 31
页数:4
相关论文
共 10 条
[1]  
Binmore K.G., 1982, MATH ANAL, VSecond
[2]   HIGH-RESOLUTION FREQUENCY-WAVENUMBER SPECTRUM ANALYSIS [J].
CAPON, J .
PROCEEDINGS OF THE IEEE, 1969, 57 (08) :1408-&
[3]  
FOIAS C, 1988, IEEE T INFORM THEORY, P1066
[4]  
FRAZHO AE, 1991, IEEE T SIGNAL PROCES, P1210
[5]  
Grafakos L., 2004, Classical and Modern Fourier Analysis
[6]  
GRENANDER U, 1984, STAT ANAL STATIONARY, P89
[7]  
KAY S, 2006, OC C BOST MA
[8]  
Kay S. M., 1988, Modern spectral estimation: theory and application
[9]   ON THE FAMILY OF ML SPECTRAL ESTIMATES FOR MIXED SPECTRUM IDENTIFICATION [J].
SHERMAN, PJ ;
LOU, KN .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1991, 39 (03) :644-655
[10]  
Van Trees HarryL., 2002, Optimum Array Processing, V4, DOI DOI 10.1002/0471221104