Production of Two-Dimensional Nanomaterials via Liquid-Based Direct Exfoliation

被引:441
作者
Niu, Liyong [1 ,2 ]
Coleman, Jonathan N. [3 ,4 ]
Zhang, Hua [5 ]
Shin, Hyeonsuk [6 ,7 ]
Chhowalla, Manish [8 ]
Zheng, Zijian [1 ,2 ]
机构
[1] Hong Kong Polytech Univ, Inst Text & Clothing, Nanotechnol Ctr, Kowloon, Hong Kong, Peoples R China
[2] Hong Kong Polytech Univ, Adv Res Ctr Fash & Text, Shenzhen Res Inst, Shenzhen 518000, Peoples R China
[3] Univ Dublin Trinity Coll, Sch Phys, CRANN, Dublin 2, Ireland
[4] Univ Dublin Trinity Coll, AMBER, Dublin 2, Ireland
[5] Nanyang Technol Univ, Sch Mat Sci & Engn, Ctr Programmable Mat, 50 Nanyang Ave, Singapore 639798, Singapore
[6] Ulsan Natl Inst Sci & Technol, Dept Chem, Ulsan 689798, South Korea
[7] Ulsan Natl Inst Sci & Technol, Dept Energy Engn, Ulsan 689798, South Korea
[8] Rutgers State Univ, Mat Sci & Engn, 607 Taylor Rd, Piscataway, NJ 08854 USA
基金
欧洲研究理事会; 新加坡国家研究基金会; 爱尔兰科学基金会;
关键词
TRANSITION-METAL DICHALCOGENIDES; FEW-LAYER GRAPHENE; HEXAGONAL BORON-NITRIDE; HIGH VOLUMETRIC CAPACITANCE; WALLED CARBON NANOTUBES; LITHIUM-ION BATTERIES; ORGANIC SOLAR-CELLS; BLACK PHOSPHORUS; PHASE EXFOLIATION; SOLVENT EXFOLIATION;
D O I
10.1002/smll.201502207
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Tremendous efforts have been devoted to the synthesis and application of two-dimensional (2D) nanomaterials due to their extraordinary and unique properties in electronics, photonics, catalysis, etc., upon exfoliation from their bulk counterparts. One of the greatest challenges that scientists are confronted with is how to produce large quantities of 2D nanomaterials of high quality in a commercially viable way. This review summarizes the state-of-the-art of the production of 2D nanomaterials using liquid-based direct exfoliation (LBE), a very promising and highly scalable wet approach for synthesizing high quality 2D nanomaterials in mild conditions. LBE is a collection of methods that directly exfoliates bulk layered materials into thin flakes of 2D nanomaterials in liquid media without any, or with a minimum degree of, chemical reactions, so as to maintain the high crystallinity of 2D nanomaterials. Different synthetic methods are categorized in the following, in which material characteristics including dispersion concentration, flake thickness, flake size and some applications are discussed in detail. At the end, we provide an overview of the advantages and disadvantages of such synthetic methods of LBE and propose future perspectives.
引用
收藏
页码:272 / 293
页数:22
相关论文
共 174 条
[1]   How to get between the sheets: a review of recent works on the electrochemical exfoliation of graphene materials from bulk graphite [J].
Abdelkader, A. M. ;
Cooper, A. J. ;
Dryfe, R. A. W. ;
Kinloch, I. A. .
NANOSCALE, 2015, 7 (16) :6944-6956
[2]   Stable Aqueous Dispersions of Noncovalently Functionalized Graphene from Graphite and their Multifunctional High-Performance Applications [J].
An, Xiaohong ;
Simmons, Trevor John ;
Shah, Rakesh ;
Wolfe, Christopher ;
Lewis, Kim M. ;
Washington, Morris ;
Nayak, Saroj K. ;
Talapatra, Saikat ;
Kar, Swastik .
NANO LETTERS, 2010, 10 (11) :4295-4301
[3]   Edge and confinement effects allow in situ measurement of size and thickness of liquid-exfoliated nanosheets [J].
Backes, Claudia ;
Smith, Ronan J. ;
McEvoy, Niall ;
Berner, Nina C. ;
McCloskey, David ;
Nerl, Hannah C. ;
O'Neill, Arlene ;
King, Paul J. ;
Higgins, Tom ;
Hanlon, Damien ;
Scheuschner, Nils ;
Maultzsch, Janina ;
Houben, Lothar ;
Duesberg, Georg S. ;
Donegan, John F. ;
Nicolosi, Valeria ;
Coleman, Jonathan N. .
NATURE COMMUNICATIONS, 2014, 5
[4]  
Balog R, 2010, NAT MATER, V9, P315, DOI [10.1038/nmat2710, 10.1038/NMAT2710]
[5]   Evaluation of solution-processed reduced graphene oxide films as transparent conductors [J].
Becerril, Hdctor A. ;
Mao, Jie ;
Liu, Zunfeng ;
Stoltenberg, Randall M. ;
Bao, Zhenan ;
Chen, Yongsheng .
ACS NANO, 2008, 2 (03) :463-470
[6]   ENCAPSULATION OF POLYMERS INTO MOS2 AND METAL TO INSULATOR TRANSITION IN METASTABLE MOS2 [J].
BISSESSUR, R ;
KANATZIDIS, MG ;
SCHINDLER, JL ;
KANNEWURF, CR .
JOURNAL OF THE CHEMICAL SOCIETY-CHEMICAL COMMUNICATIONS, 1993, (20) :1582-1585
[7]   Graphene-based liquid crystal device [J].
Blake, Peter ;
Brimicombe, Paul D. ;
Nair, Rahul R. ;
Booth, Tim J. ;
Jiang, Da ;
Schedin, Fred ;
Ponomarenko, Leonid A. ;
Morozov, Sergey V. ;
Gleeson, Helen F. ;
Hill, Ernie W. ;
Geim, Andre K. ;
Novoselov, Kostya S. .
NANO LETTERS, 2008, 8 (06) :1704-1708
[8]   Aqueous-phase exfoliation of graphite in the presence of polyvinylpyrrolidone for the production of water-soluble graphenes [J].
Bourlinos, Athanasios B. ;
Georgakilas, Vasilios ;
Zboril, Radek ;
Steriotis, Theodore A. ;
Stubos, Athanasios K. ;
Trapalis, Christos .
SOLID STATE COMMUNICATIONS, 2009, 149 (47-48) :2172-2176
[9]   Liquid-Phase Exfoliation of Graphite Towards Solubilized Graphenes [J].
Bourlinos, Athanasios B. ;
Georgakilas, Vasilios ;
Zboril, Radek ;
Steriotis, Theodore A. ;
Stubos, Athanasios K. .
SMALL, 2009, 5 (16) :1841-1845
[10]   Production of few-layer phosphorene by liquid exfoliation of black phosphorus [J].
Brent, Jack R. ;
Savjani, Nicky ;
Lewis, Edward A. ;
Haigh, Sarah J. ;
Lewis, David J. ;
O'Brien, Paul .
CHEMICAL COMMUNICATIONS, 2014, 50 (87) :13338-13341