New algorithm to simulate organ movement and deformation for four-dimensional dose calculation based on a three-dimensional CT and fluoroscopy of the thorax

被引:10
作者
Miyabe, Yuki [1 ]
Narita, Yuichiro [1 ]
Mizowaki, Takashi [1 ]
Matsuo, Yukinori [1 ]
Takayama, Kenji [1 ]
Takahashi, Kunio [2 ]
Kaneko, Shuji [2 ]
Kawada, Noriyuki [2 ]
Maruhashi, Akira [3 ]
Hiraoka, Masahiro [1 ]
机构
[1] Kyoto Univ, Grad Sch Med, Dept Radiat Oncol & Image Appl Therapy, Kyoto 6068507, Japan
[2] Mitsubishi Heavy Ind Co Ltd, Med Syst Adm Off, Hiroshima Machinery Works, Hiroshima 7338553, Japan
[3] Kyoto Univ, Inst Res Reactor, Dept Radiat Life Sci & Radiat Med Sci, Osaka 5900494, Japan
关键词
organ motion; deformable modeling; 4D-CT; lung tumor; LUNG-TUMOR MOTION; RESPIRATION-CORRELATED CT; COMPUTED-TOMOGRAPHY; IMAGE REGISTRATION; MUTUAL-INFORMATION; TARGET VOLUME; LASER SCANNER; DYNAMIC MRI; RIB CAGE; RADIOTHERAPY;
D O I
10.1118/1.3213083
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: The aim of this study was to develop a 4D-modeling algorithm, designated "3D+," to simulate organ movement and deformation for 4D dose calculation without the need for 4D-CT or deformable image registration and to assess the validity of this algorithm. Methods: This 3D+ algorithm virtually creates 4D-CT images by deforming static 3D-CT data according to a typical motion model and motion data at multiple observation points collected via fluoroscopy. A typical motion model intended for patients with lung tumors immobilized with a vacuum pillow inside a stereotactic body frame was constructed. The geometric accuracy of virtual 4D-CT images created using this 3D+ algorithm was evaluated in eight patients by comparing the simulated results with actual 4D-CT images in terms of visual assessment, landmark analysis, and comparison of the radial distance from the tumor centroid to the body or lung surface. Results: The average accuracy for all patients, as determined via landmark analysis, was 2.8 +/- 1.8 mm, very similar to results obtained through 4D-CT and deformable image registrations. Error in the radial distance from the tumor centroid to the body or lung surface was generally within 1.0 or 2.0 mm, respectively, in virtual versus actual 4D-CT images. Therefore, it is assumed that these geometric errors would have only negligible effects on dose calculation. Conclusions: 4D modeling of the thorax utilizing the 3D+ algorithm shows acceptable accuracy and is more suited for routine clinical use in terms of processing time than conventional 4D-CT and deformable image registration. The 3D+ algorithm may be useful for simulating dose distribution for advanced beam delivery techniques, such as real-time tumor tracking irradiation and adaptive radiation therapy. (C) 2009 American Association of Physicists in Medicine. [DOI: 10.1118/1.3213083]
引用
收藏
页码:4328 / 4339
页数:12
相关论文
共 49 条
[1]   Improvement of CT-based treatment-planning models of abdominal targets using static exhale imaging [J].
Balter, JM ;
Lam, KL ;
McGinn, CJ ;
Lawrence, TS ;
Ten Haken, RK .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 1998, 41 (04) :939-943
[2]   Determination of ventilatory liver movement via radiographic evaluation of diaphragm position [J].
Balter, JM ;
Dawson, LA ;
Kazanjian, S ;
McGinn, C ;
Brock, KK ;
Lawrence, T ;
Ten Haken, R .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2001, 51 (01) :267-270
[3]   Correlation between internal fiducial tumor motion and external marker motion for liver tumors imaged with 4D-CT [J].
Beddar, A. Sam ;
Kainz, Kristofer ;
Briere, Tina Marie ;
Tsunashima, Yoshikazu ;
Pan, Tinsu ;
Prado, Karl ;
Mohan, Radhe ;
Gillin, Michael ;
Krishnan, Sunil .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2007, 67 (02) :630-638
[4]   MRI-based measurements of respiratory motion variability and assessment of imaging strategies for radiotherapy planning [J].
Blackall, J. M. ;
Ahmad, S. ;
Miquel, M. E. ;
McClelland, J. R. ;
Landau, D. B. ;
Hawkes, D. J. .
PHYSICS IN MEDICINE AND BIOLOGY, 2006, 51 (17) :4147-4169
[5]   Abdominal organ motion measured using 4D CT [J].
Brandner, Edward D. ;
Wu, Andrew ;
Chen, Hungcheng ;
Heron, Dwight ;
Kalnicki, Shalom ;
Komanduri, Krishna ;
Gerszten, Kristina ;
Burton, Steve ;
Ahmed, Irfan ;
Shou, Zhenyu .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2006, 65 (02) :554-560
[6]   Accuracy of finite element model-based multi-organ deformable image registration [J].
Brock, KK ;
Sharpe, MB ;
Dawson, LA ;
Kim, SM ;
Jaffray, DA .
MEDICAL PHYSICS, 2005, 32 (06) :1647-1659
[7]   Automated generation of a four-dimensional model of the liver using warping and mutual information [J].
Brock, KM ;
Balter, JM ;
Dawson, LA ;
Kessler, ML ;
Meyer, CR .
MEDICAL PHYSICS, 2003, 30 (06) :1128-1133
[8]   Evaluation of the reproducibility of lung motion probability distribution function (PDF) using dynamic MRI [J].
Cai, Jing ;
Read, Paul W. ;
Altes, Talissa A. ;
Molloy, Janelle A. ;
Brookeman, James R. ;
Sheng, Ke .
PHYSICS IN MEDICINE AND BIOLOGY, 2007, 52 (02) :365-373
[9]   Artifacts in computed tomography scanning of moving objects [J].
Chen, GTY ;
Kung, JH ;
Beaudette, KP .
SEMINARS IN RADIATION ONCOLOGY, 2004, 14 (01) :19-26
[10]   Mutual information based CT registration of the lung at exhale and inhale breathing states using thin-plate splines [J].
Coselmon, MM ;
Balter, JM ;
McShan, DL ;
Kessler, ML .
MEDICAL PHYSICS, 2004, 31 (11) :2942-2948