Two-dimensional lattice model for the surface states of topological insulators

被引:36
作者
Zhou, Yan-Feng [1 ,2 ]
Jiang, Hua [3 ]
Xie, X. C. [1 ,2 ]
Sun, Qing-Feng [1 ,2 ]
机构
[1] Peking Univ, Sch Phys, Int Ctr Quantum Mat, Beijing 100871, Peoples R China
[2] Collaborat Innovat Ctr Quantum Matter, Beijing 100871, Peoples R China
[3] Soochow Univ, Coll Phys Optoelect & Energy, Suzhou 215006, Peoples R China
关键词
SINGLE DIRAC CONE; TRANSPORT; FERMIONS;
D O I
10.1103/PhysRevB.95.245137
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The surface states in three-dimensional (3D) topological insulators can be described by a two-dimensional (2D) continuous Dirac Hamiltonian. However, there exists the fermion doubling problem when putting the continuous 2D Dirac equation into a lattice model. In this paper, we introduce a Wilson term with a zero bare mass into the 2D lattice model to overcome the difficulty. By comparing with a 3D Hamiltonian, we show that the modified 2D lattice model can faithfully describe the low-energy electrical and transport properties of surface states of 3D topological insulators. So this 2D lattice model provides a simple and cheap way to numerically simulate the surface states of 3D topological-insulator nanostructures. Based on the 2D lattice model, we also establish the wormhole effect in a topological-insulator nanowire by a magnetic field along the wire and show the surface states being robust against disorder. The proposed 2D lattice model can be extensively applied to study the various properties and effects, such as the transport properties, Hall effect, universal conductance fluctuations, localization effect, etc. So, it paves a way to study the surface states of the 3D topological insulators.
引用
收藏
页数:6
相关论文
共 44 条
[1]  
[Anonymous], 1981, PHYS LETT B, V105, P219
[2]   MAGNETIC-FLUX EFFECTS IN DISORDERED CONDUCTORS [J].
ARONOV, AG ;
SHARVIN, YV .
REVIEWS OF MODERN PHYSICS, 1987, 59 (03) :755-779
[3]   Aharonov-Bohm Oscillations in Disordered Topological Insulator Nanowires [J].
Bardarson, J. H. ;
Brouwer, P. W. ;
Moore, J. E. .
PHYSICAL REVIEW LETTERS, 2010, 105 (15)
[4]   Electronic states of wires and slabs of topological insulators: Quantum Hall effects and edge transport [J].
Brey, L. ;
Fertig, H. A. .
PHYSICAL REVIEW B, 2014, 89 (08)
[5]   Strong surface scattering in ultrahigh-mobility Bi2Se3 topological insulator crystals [J].
Butch, N. P. ;
Kirshenbaum, K. ;
Syers, P. ;
Sushkov, A. B. ;
Jenkins, G. S. ;
Drew, H. D. ;
Paglione, J. .
PHYSICAL REVIEW B, 2010, 81 (24)
[6]   Experimental Realization of a Three-Dimensional Topological Insulator, Bi2Te3 [J].
Chen, Y. L. ;
Analytis, J. G. ;
Chu, J. -H. ;
Liu, Z. K. ;
Mo, S. -K. ;
Qi, X. L. ;
Zhang, H. J. ;
Lu, D. H. ;
Dai, X. ;
Fang, Z. ;
Zhang, S. C. ;
Fisher, I. R. ;
Hussain, Z. ;
Shen, Z. -X. .
SCIENCE, 2009, 325 (5937) :178-181
[7]   Aharonov-Bohm oscillations in a quasi-ballistic three-dimensional topological insulator nanowire [J].
Cho, Sungjae ;
Dellabetta, Brian ;
Zhong, Ruidan ;
Schneeloch, John ;
Liu, Tiansheng ;
Gu, Genda ;
Gilbert, Matthew J. ;
Mason, Nadya .
NATURE COMMUNICATIONS, 2015, 6
[8]  
Datta S., 1997, Electronic Transport in Mesoscopic Systems, DOI DOI 10.1063/1.2807624
[9]   Edge states of a three-dimensional topological insulator [J].
Deb, Oindrila ;
Soori, Abhiram ;
Sen, Diptiman .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2014, 26 (31)
[10]   Quasiballistic Transport of Dirac Fermions in a Bi2Se3 Nanowire [J].
Dufouleur, J. ;
Veyrat, L. ;
Teichgraeber, A. ;
Neuhaus, S. ;
Nowka, C. ;
Hampel, S. ;
Cayssol, J. ;
Schumann, J. ;
Eichler, B. ;
Schmidt, O. G. ;
Buechner, B. ;
Giraud, R. .
PHYSICAL REVIEW LETTERS, 2013, 110 (18)