Interpolation characteristics of maximal polynomial approximants to rational functions

被引:1
作者
Blatt, H-P [1 ]
Grothmann, R. [1 ]
机构
[1] Katholische Univ Eichstatt Ingolstadt, Math Geog Fak, D-85071 Eichstatt, Germany
关键词
complex approximation; interpolation; maximal convergence; equilibrium measure;
D O I
10.4064/ap180803-4-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let E be a compact set in C with connected regular complement and let p(n), n is an element of N, be a sequence of polynomials which converge maximally to a fixed rational function f on E. Then p(n) has n + o(n) interpolation points to f in C and the normalized counting measure nu(n) of these interpolation points (resp. its balayage measure (nu) over cap (n) onto the boundary of E) converges to the equilibrium measure of E as n -> infinity. Furthermore, we prove a complete characterization of maximal convergence by interpolation.
引用
收藏
页码:155 / 169
页数:15
相关论文
共 8 条
[1]  
[Anonymous], SITZUNGSBER BERLINER
[2]  
[Anonymous], 2002, SPRINGER MG MATH
[3]   Distribution of interpolation points [J].
Grothmann, R .
ARKIV FOR MATEMATIK, 1996, 34 (01) :103-117
[4]   ON THE ZEROS OF SEQUENCES OF POLYNOMIALS [J].
GROTHMANN, R .
JOURNAL OF APPROXIMATION THEORY, 1990, 61 (03) :351-359
[5]  
Ikonomov N, 2013, CR ACAD BULG SCI, V66, P1097
[6]  
Kovacheva R. K., 2014, B SOC SCI LETT LODZ, V44, P11
[7]  
Saff E.B., 1997, Logarithmic potentials with external fields
[8]  
WALSH JL, 1969, AM MATH SOC C PUBL, V20