A dynamic atomistic-continuum method for the simulation of crystalline materials

被引:84
作者
E, WN [1 ]
Huang, ZY
机构
[1] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
[2] Princeton Univ, PACM, Princeton, NJ 08544 USA
[3] Peking Univ, Sch Math, Beijing 100866, Peoples R China
[4] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
基金
美国国家科学基金会;
关键词
atomistic-continuum method; molecular dynamics; dislocation; phonons; friction; crack propagation;
D O I
10.1006/jcph.2002.7164
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present a coupled atomistic-continuum method for the modeling of defects and interface dynamics in crystalline materials. The method uses atomistic models such as molecular dynamics near defects and interfaces, and continuum models away from defects and interfaces. We propose a new class of matching conditions between the atomistic and the continuum regions. These conditions ensure the accurate passage of large-scale information between the atomistic and the continuum regions and at the same time minimize the reflection of phonons at the atomistic-continuum interface. They can be made adaptive by choosing appropriate weight functions. We present applications to dislocation dynamics, friction between two-dimensional crystal surfaces, and fracture dynamics. We compare results of the coupled method and of the detailed atomistic model. (C) 2002 Elsevier Science (USA).
引用
收藏
页码:234 / 261
页数:28
相关论文
共 23 条
[1]   Spanning the continuum to quantum length scales in a dynamic simulation of brittle fracture [J].
Abraham, FF ;
Broughton, JQ ;
Bernstein, N ;
Kaxiras, E .
EUROPHYSICS LETTERS, 1998, 44 (06) :783-787
[2]  
[Anonymous], 2001, MODERN TRIBOLOGY HDB
[3]   Adaptive finite element techniques for the acoustic wave equation [J].
Bangerth, W ;
Rannacher, R .
JOURNAL OF COMPUTATIONAL ACOUSTICS, 2001, 9 (02) :575-591
[4]   ADAPTIVE MESH REFINEMENT FOR HYPERBOLIC PARTIAL-DIFFERENTIAL EQUATIONS [J].
BERGER, MJ ;
OLIGER, J .
JOURNAL OF COMPUTATIONAL PHYSICS, 1984, 53 (03) :484-512
[5]   Concurrent coupling of length scales: Methodology and application [J].
Broughton, JQ ;
Abraham, FF ;
Bernstein, N ;
Kaxiras, E .
PHYSICAL REVIEW B, 1999, 60 (04) :2391-2403
[6]   Minimizing boundary reflections in coupled-domain simulations [J].
Cai, W ;
de Koning, M ;
Bulatov, VV ;
Yip, S .
PHYSICAL REVIEW LETTERS, 2000, 85 (15) :3213-3216
[7]  
CLAYTON R, 1977, B SEISMOL SOC AM, V67, P1529
[8]  
Ehrhardt M., 2001, Rev. Math. Univ. Parma, V6, P57
[9]   RADIATION BOUNDARY-CONDITIONS FOR ACOUSTIC AND ELASTIC WAVE CALCULATIONS [J].
ENGQUIST, B ;
MAJDA, A .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1979, 32 (03) :313-357
[10]  
ENGQUIST WEB, 2002, HETEROGENEOUS MULTIS