Existence of positive almost periodic solutions to a class of hematopoiesis model

被引:41
作者
Ding, Hui-Sheng [1 ]
Liu, Qing-Long [1 ]
Nieto, Juan J. [2 ,3 ]
机构
[1] Jiangxi Normal Univ, Coll Math & Informat Sci, Nanchang 330022, Jiangxi, Peoples R China
[2] Univ Santiago de Compostela, Fac Matemat, Dept Anal Matemat, Santiago De Compostela 15782, Spain
[3] King Abdulaziz Univ, Fac Sci, Dept Math, Jeddah 21589, Saudi Arabia
关键词
Almost periodic solution; Hematopoiesis model; fixed point; cone; MACKEY-GLASS MODEL; OSCILLATION; STABILITY; DYNAMICS;
D O I
10.1016/j.apm.2015.10.020
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We establish several existence and uniqueness results about positive almost periodic solutions for a class of hematopoiesis model. We give the proof of two properties relative to the composition of almost periodic functions and then use fixed point theory in an appropriate cone of the Banach space of almost periodic functions. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:3289 / 3297
页数:9
相关论文
共 27 条
[11]  
Corduneanu C., 1989, ALMOST PERIODIC FUNC
[12]   Existence of almost periodic solutions for SICNNs with time-varying delays [J].
Ding, Hui-Sheng ;
Liang, Jin ;
Xiao, Ti-Jun .
PHYSICS LETTERS A, 2008, 372 (33) :5411-5416
[13]   Weighted pseudo almost periodic solutions for a class of discrete hematopoiesis model [J].
Ding, Hui-Sheng ;
N'Guerekata, Gaston M. ;
Nieto, Juan J. .
REVISTA MATEMATICA COMPLUTENSE, 2013, 26 (02) :427-443
[14]   Existence of positive almost automorphic solutions to nonlinear delay integral equations [J].
Ding, Hui-Sheng ;
Xiao, Ti-Jun ;
Liang, Jin .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (06) :2216-2231
[15]   Multiple positive periodic solutions for a nonlinear first order functional difference equation [J].
Dix, Julio G. ;
Padhi, Seshadev ;
Pati, Smita .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2010, 16 (09) :1037-1046
[16]   Pseudo almost periodic solutions for a model of hematopoiesis with a feedback control [J].
Jia R. .
Journal of Applied Mathematics and Computing, 2015, 49 (1-2) :475-491
[17]  
Levitan BM., 1982, Almost periodic functions and differential equations
[18]   A retarded Gronwall-like inequality and its applications [J].
Lipovan, O .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 252 (01) :389-401
[19]   OSCILLATION AND CHAOS IN PHYSIOLOGICAL CONTROL-SYSTEMS [J].
MACKEY, MC ;
GLASS, L .
SCIENCE, 1977, 197 (4300) :287-288
[20]  
Padhi S., 2009, PANAMER MATH J, V19, P27