Existence of positive almost periodic solutions to a class of hematopoiesis model

被引:41
作者
Ding, Hui-Sheng [1 ]
Liu, Qing-Long [1 ]
Nieto, Juan J. [2 ,3 ]
机构
[1] Jiangxi Normal Univ, Coll Math & Informat Sci, Nanchang 330022, Jiangxi, Peoples R China
[2] Univ Santiago de Compostela, Fac Matemat, Dept Anal Matemat, Santiago De Compostela 15782, Spain
[3] King Abdulaziz Univ, Fac Sci, Dept Math, Jeddah 21589, Saudi Arabia
关键词
Almost periodic solution; Hematopoiesis model; fixed point; cone; MACKEY-GLASS MODEL; OSCILLATION; STABILITY; DYNAMICS;
D O I
10.1016/j.apm.2015.10.020
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We establish several existence and uniqueness results about positive almost periodic solutions for a class of hematopoiesis model. We give the proof of two properties relative to the composition of almost periodic functions and then use fixed point theory in an appropriate cone of the Banach space of almost periodic functions. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:3289 / 3297
页数:9
相关论文
共 27 条
[1]   Positive almost periodic solutions for a delay logarithmic population model [J].
Alzabut, J. O. ;
Stamov, G. T. ;
Sermutlu, E. .
MATHEMATICAL AND COMPUTER MODELLING, 2011, 53 (1-2) :161-167
[2]   Existence and Exponential Stability of Positive Almost Periodic Solutions for a Model of Hematopoiesis [J].
Alzabut, J. O. ;
Nieto, J. J. ;
Stamov, G. Tr. .
BOUNDARY VALUE PROBLEMS, 2009,
[3]   Almost periodic dynamics of a discrete Nicholson's blowflies model involving a linear harvesting term [J].
Alzabut, Jehad ;
Bolat, Yasar ;
Abdeljawad, Thabet .
ADVANCES IN DIFFERENCE EQUATIONS, 2012,
[4]   Almost periodic solutions for an impulsive delay Nicholson's blowflies model [J].
Alzabut, Jehad O. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 234 (01) :233-239
[5]  
[Anonymous], 1974, Almost Periodic Differential Equations
[6]  
[Anonymous], 1985, NONLINEAR FUNCTIONAL
[7]   Mackey-Glass model of hematopoiesis with non-monotone feedback: Stability, oscillation and control [J].
Berezansky, Leonid ;
Braverman, Elena ;
Idels, Lev .
APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (11) :6268-6283
[8]   The Mackey-Glass model of respiratory dynamics: Review and new results [J].
Berezansky, Leonid ;
Braverman, Elena ;
Idels, Lev .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (16) :6034-6052
[9]   Permanence, oscillation and attractivity of the discrete hematopoiesis model with variable coefficients [J].
Braverman, E. ;
Saker, S. H. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 67 (10) :2955-2965
[10]   GLOBAL EXPONENTIAL STABILITY OF POSITIVE ALMOST PERIODIC SOLUTIONS FOR A MODEL OF HEMATOPOIESIS [J].
Chen, Zhibin .
KODAI MATHEMATICAL JOURNAL, 2014, 37 (02) :260-273