The in situ study of surface species and structures of oxide-derived copper catalysts for electrochemical CO2 reduction

被引:63
作者
Chen, Chunjun [1 ,2 ]
Yan, Xupeng [1 ,2 ]
Wu, Yahui [1 ,2 ]
Liu, Shoujie [3 ]
Sun, Xiaofu [1 ,2 ]
Zhu, Qinggong [1 ]
Feng, Rongjuan [1 ]
Wu, Tianbin [1 ]
Qian, Qingli [1 ]
Liu, Huizhen [1 ]
Zheng, Lirong [6 ]
Zhang, Jing [6 ]
Han, Buxing [1 ,2 ,4 ,5 ]
机构
[1] Chinese Acad Sci, Inst Chem, CAS Key Lab Colloid & Interface & Thermodynam, Beijing Natl Lab Mol Sci,CAS Res Educ Ctr Excelle, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Chem & Chem Engn Guangdong Lab, Shantou 515063, Peoples R China
[4] Huairou Natl Comprehens Sci Ctr, Phys Sci Lab, Beijing 101400, Peoples R China
[5] East China Normal Univ, Sch Chem & Mol Engn, Shanghai Key Lab Green Chem & Chem Proc, Shanghai 200062, Peoples R China
[6] Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
CARBON-DIOXIDE ELECTROREDUCTION; GRAIN-BOUNDARY; ELECTRODES; HYDROCARBONS; MONOXIDE; CU;
D O I
10.1039/d1sc00042j
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Oxide-derived copper (OD-Cu) has been discovered to be an effective catalyst for the electroreduction of CO2 to C2+ products. The structure of OD-Cu and its surface species during the reaction process are interesting topics, which have not yet been clearly discussed. Herein, in situ surface-enhanced Raman spectroscopy (SERS), operando X-ray absorption spectroscopy (XAS), and O-18 isotope labeling experiments were employed to investigate the surface species and structures of OD-Cu catalysts during CO2 electroreduction. It was found that the OD-Cu catalysts were reduced to metallic Cu(0) in the reaction. CuOx species existed on the catalyst surfaces during the CO2RR, which resulted from the adsorption of preliminary intermediates (such as *CO2 and *OCO-) on Cu instead of on the active sites of the catalyst. It was also found that abundant interfaces can be produced on OD-Cu, which can provide heterogeneous CO adsorption sites (strong binding sites and weak binding sites), leading to outstanding performance for obtaining C2+ products. The Faradaic efficiency (FE) for C2+ products reached as high as 83.8% with a current density of 341.5 mA cm(-2) at -0.9 V vs. RHE.
引用
收藏
页码:5938 / 5943
页数:6
相关论文
共 48 条
[1]   The role of in situ generated morphological motifs and Cu(i) species in C2+ product selectivity during CO2 pulsed electroreduction [J].
Aran-Ais, Rosa M. ;
Scholten, Fabian ;
Kunze, Sebastian ;
Rizo, Ruben ;
Roldan Cuenya, Beatriz .
NATURE ENERGY, 2020, 5 (04) :317-325
[2]   Highly Efficient Electroreduction of CO2to C2+Alcohols on Heterogeneous Dual Active Sites [J].
Chen, Chunjun ;
Yan, Xupeng ;
Liu, Shoujie ;
Wu, Yahui ;
Wan, Qiang ;
Sun, Xiaofu ;
Zhu, Qinggong ;
Liu, Huizhen ;
Ma, Jun ;
Zheng, Lirong ;
Wu, Haihong ;
Han, Buxing .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (38) :16459-16464
[3]   Boosting CO2 Electroreduction on N,P-Co-doped Carbon Aerogels [J].
Chen, Chunjun ;
Sun, Xiaofu ;
Yan, Xupeng ;
Wu, Yahui ;
Liu, Huizhen ;
Zhu, Qinggong ;
Bediako, Bernard Baffour Asare ;
Han, Buxing .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (27) :11123-11129
[4]   A strategy to control the grain boundary density and Cu+/Cu0 ratio of Cu-based catalysts for efficient electroreduction of CO2 to C2 products [J].
Chen, Chunjun ;
Sun, Xiaofu ;
Yan, Xupeng ;
Wu, Yahui ;
Liu, Mingyang ;
Liu, Shuaishuai ;
Zhao, Zhijuan ;
Han, Buxing .
GREEN CHEMISTRY, 2020, 22 (05) :1572-1576
[5]   Electrocatalytic Reduction of CO2 to Acetic Acid by a Molecular Manganese Corrole Complex [J].
De, Ratnadip ;
Gonglach, Sabrina ;
Paul, Shounik ;
Haas, Michael ;
Sreejith, S. S. ;
Gerschel, Philipp ;
Apfel, Ulf-Peter ;
Vuong, Thanh Huyen ;
Rabeah, Jabor ;
Roy, Soumyajit ;
Schoefberger, Wolfgang .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (26) :10527-10534
[6]   CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface [J].
Dinh, Cao-Thang ;
Burdyny, Thomas ;
Kibria, Md Golam ;
Seifitokaldani, Ali ;
Gabardo, Christine M. ;
de Arquer, F. Pelayo Garcia ;
Kiani, Amirreza ;
Edwards, Jonathan P. ;
De Luna, Phil ;
Bushuyev, Oleksandr S. ;
Zou, Chengqin ;
Quintero-Bermudez, Rafael ;
Pang, Yuanjie ;
Sinton, David ;
Sargent, Edward H. .
SCIENCE, 2018, 360 (6390) :783-787
[7]   Subsurface Oxygen in Oxide-Derived Copper Electrocatalysts for Carbon Dioxide Reduction [J].
Eilert, Andre ;
Cavalca, Filippo ;
Roberts, F. Sloan ;
Osterwalder, Juerg ;
Liu, Chang ;
Favaro, Marco ;
Crumlin, Ethan J. ;
Ogasawara, Hirohito ;
Friebel, Daniel ;
Pettersson, Lars G. M. ;
Nilsson, Anders .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2017, 8 (01) :285-290
[8]   Structural Changes of Cu(110) and Cu(110)-(2 x 1)-O Surfaces under Carbon Monoxide in the Torr Pressure Range Studied with Scanning Tunneling Microscopy and Infrared Reflection Absorption Spectroscopy [J].
Eren, Baran ;
Liu, Zongyuan ;
Stacchiola, Dario ;
Somorjai, Gabor A. ;
Salmeron, Miquel .
JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (15) :8227-8231
[9]   Strategies in catalysts and electrolyzer design for electrochemical CO2 reduction toward C2+ products [J].
Fan, Lei ;
Xia, Chuan ;
Yang, Fangqi ;
Wang, Jun ;
Wang, Haotian ;
Lu, Yingying .
SCIENCE ADVANCES, 2020, 6 (08)
[10]   Selective CO2 Electroreduction to Ethylene and Multicarbon Alcohols via Electrolyte-Driven Nanostructuring [J].
Gao, Dunfeng ;
Sinev, Ilya ;
Scholten, Fabian ;
Aran-Ais, Rosa M. ;
Divins, Nuria J. ;
Kvashnina, Kristina ;
Timoshenko, Janis ;
Roldan Cuenya, Beatriz .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (47) :17047-17053