Quantification of Drain Extension Leakage in a Scaled Bulk Germanium PMOS Technology

被引:22
作者
Eneman, Geert [1 ,2 ,3 ]
De Jaeger, Brice [1 ]
Simoen, Eddy [1 ]
Brunco, David P. [4 ]
Hellings, Geert [1 ,2 ,5 ]
Mitard, Jerome [1 ]
De Meyer, Kristin [1 ,2 ]
Meuris, Marc [1 ]
Heyns, Marc M. [1 ]
机构
[1] Interuniv Microelect Ctr, B-3001 Louvain, Belgium
[2] Katholieke Univ Leuven, ESAT INSYS, B-3000 Louvain, Belgium
[3] Fund Sci Res Flanders FWO, B-1000 Brussels, Belgium
[4] IMEC, Hillsboro, OR 97124 USA
[5] Flanders IWT Vlaanderen, Inst Promot Innovat Sci & Technol, B-1000 Brussels, Belgium
关键词
Germanium; halo implant; leakage current; MOSFETs; p plus -n junctions; HIGH-PERFORMANCE; HIGH-MOBILITY; GE; MOSFETS; REDUCTION; CIRCUITS; FIELD;
D O I
10.1109/TED.2009.2033156
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper is the first to quantify drain extension leakage in a sub-100-nm gate-length bulk germanium technology. Leakage through the transistor's extension/halo junction is shown to be the dominant leakage component in a scaled transistor layout. Optimizing halo and extension implants to improve short-channel control further increases the extension leakage. As a consequence, drain-to-bulk leakage in Ge pFETs is likely 4 x 10(-7) A/mu m or higher for an L-G = 70-nm pMOS technology with good short-channel control at a supply voltage of 1 V. The weak thermal sensitivity of the extension leakage points to a band-to-band tunneling (BTBT) mechanism, which leads to only 40%-50% increase of the extension leakage between 25 degrees C and 100 degrees C. As BTBT depends exponentially on the electric field across the junction, lowering the supply voltage below 0.7 V can lead to drain leakages below 1 x 10(-7) A/mu m.
引用
收藏
页码:3115 / 3122
页数:8
相关论文
共 30 条
[1]   Leakage power analysis and reduction for nanoscale circuits [J].
Agarwal, A ;
Mukhopadhyay, S ;
Raychowdhury, A ;
Roy, K ;
Kim, CH .
IEEE MICRO, 2006, 26 (02) :68-80
[2]  
[Anonymous], 2006, SENTAURUS PROCESS RE
[3]  
[Anonymous], P DEV RES C
[4]  
[Anonymous], 2007, TAURUS MED USER GUID
[5]  
Batail E, 2008, INT EL DEVICES MEET, P397
[6]   Germanium MOSFET devices: Advances in materials understanding, process development, and electrical performance [J].
Brunco, D. P. ;
De Jaeger, B. ;
Eneman, G. ;
Mitard, J. ;
Hellings, G. ;
Satta, A. ;
Terzieva, V. ;
Souriau, L. ;
Leys, F. E. ;
Pourtois, G. ;
Houssa, M. ;
Winderickx, G. ;
Vrancken, E. ;
Sioncke, S. ;
Opsomer, K. ;
Nicholas, G. ;
Caymax, M. ;
Stesmans, A. ;
Van Steenbergen, J. ;
Mertens, P. W. ;
Meuris, M. ;
Heyns, M. M. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2008, 155 (07) :H552-H561
[7]   Observation and suppression of nickel germanide overgrowth on germanium substrates with patterned SiO2 structures [J].
Brunco, D. P. ;
Opsomer, K. ;
De Jaeger, B. ;
Winderickx, G. ;
Verheyden, K. ;
Meuris, M. .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2008, 11 (02) :H39-H41
[8]   Benchmarking nanotechnology for high-performance and low-power logic transistor applications [J].
Chau, R ;
Datta, S ;
Doczy, M ;
Doyle, B ;
Jin, J ;
Kavalieros, J ;
Majumdar, A ;
Metz, M ;
Radosavljevic, M .
IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2005, 4 (02) :153-158
[9]   Germanium n-type shallow junction activation dependences -: art. no. 091909 [J].
Chui, CO ;
Kulig, L ;
Moran, J ;
Tsai, W ;
Saraswat, KC .
APPLIED PHYSICS LETTERS, 2005, 87 (09)
[10]  
Chui CO, 2002, INTERNATIONAL ELECTRON DEVICES 2002 MEETING, TECHNICAL DIGEST, P437, DOI 10.1109/IEDM.2002.1175872