Quantification of Drain Extension Leakage in a Scaled Bulk Germanium PMOS Technology

被引:22
作者
Eneman, Geert [1 ,2 ,3 ]
De Jaeger, Brice [1 ]
Simoen, Eddy [1 ]
Brunco, David P. [4 ]
Hellings, Geert [1 ,2 ,5 ]
Mitard, Jerome [1 ]
De Meyer, Kristin [1 ,2 ]
Meuris, Marc [1 ]
Heyns, Marc M. [1 ]
机构
[1] Interuniv Microelect Ctr, B-3001 Louvain, Belgium
[2] Katholieke Univ Leuven, ESAT INSYS, B-3000 Louvain, Belgium
[3] Fund Sci Res Flanders FWO, B-1000 Brussels, Belgium
[4] IMEC, Hillsboro, OR 97124 USA
[5] Flanders IWT Vlaanderen, Inst Promot Innovat Sci & Technol, B-1000 Brussels, Belgium
关键词
Germanium; halo implant; leakage current; MOSFETs; p plus -n junctions; HIGH-PERFORMANCE; HIGH-MOBILITY; GE; MOSFETS; REDUCTION; CIRCUITS; FIELD;
D O I
10.1109/TED.2009.2033156
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper is the first to quantify drain extension leakage in a sub-100-nm gate-length bulk germanium technology. Leakage through the transistor's extension/halo junction is shown to be the dominant leakage component in a scaled transistor layout. Optimizing halo and extension implants to improve short-channel control further increases the extension leakage. As a consequence, drain-to-bulk leakage in Ge pFETs is likely 4 x 10(-7) A/mu m or higher for an L-G = 70-nm pMOS technology with good short-channel control at a supply voltage of 1 V. The weak thermal sensitivity of the extension leakage points to a band-to-band tunneling (BTBT) mechanism, which leads to only 40%-50% increase of the extension leakage between 25 degrees C and 100 degrees C. As BTBT depends exponentially on the electric field across the junction, lowering the supply voltage below 0.7 V can lead to drain leakages below 1 x 10(-7) A/mu m.
引用
收藏
页码:3115 / 3122
页数:8
相关论文
共 30 条
  • [1] Leakage power analysis and reduction for nanoscale circuits
    Agarwal, A
    Mukhopadhyay, S
    Raychowdhury, A
    Roy, K
    Kim, CH
    [J]. IEEE MICRO, 2006, 26 (02) : 68 - 80
  • [2] [Anonymous], 2006, SENTAURUS PROCESS RE
  • [3] [Anonymous], P DEV RES C
  • [4] [Anonymous], 2007, TAURUS MED USER GUID
  • [5] Batail E, 2008, INT EL DEVICES MEET, P397
  • [6] Germanium MOSFET devices: Advances in materials understanding, process development, and electrical performance
    Brunco, D. P.
    De Jaeger, B.
    Eneman, G.
    Mitard, J.
    Hellings, G.
    Satta, A.
    Terzieva, V.
    Souriau, L.
    Leys, F. E.
    Pourtois, G.
    Houssa, M.
    Winderickx, G.
    Vrancken, E.
    Sioncke, S.
    Opsomer, K.
    Nicholas, G.
    Caymax, M.
    Stesmans, A.
    Van Steenbergen, J.
    Mertens, P. W.
    Meuris, M.
    Heyns, M. M.
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2008, 155 (07) : H552 - H561
  • [7] Observation and suppression of nickel germanide overgrowth on germanium substrates with patterned SiO2 structures
    Brunco, D. P.
    Opsomer, K.
    De Jaeger, B.
    Winderickx, G.
    Verheyden, K.
    Meuris, M.
    [J]. ELECTROCHEMICAL AND SOLID STATE LETTERS, 2008, 11 (02) : H39 - H41
  • [8] Benchmarking nanotechnology for high-performance and low-power logic transistor applications
    Chau, R
    Datta, S
    Doczy, M
    Doyle, B
    Jin, J
    Kavalieros, J
    Majumdar, A
    Metz, M
    Radosavljevic, M
    [J]. IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2005, 4 (02) : 153 - 158
  • [9] Germanium n-type shallow junction activation dependences -: art. no. 091909
    Chui, CO
    Kulig, L
    Moran, J
    Tsai, W
    Saraswat, KC
    [J]. APPLIED PHYSICS LETTERS, 2005, 87 (09)
  • [10] Chui CO, 2002, INTERNATIONAL ELECTRON DEVICES 2002 MEETING, TECHNICAL DIGEST, P437, DOI 10.1109/IEDM.2002.1175872