Sentiment Analysis based Multi-Person Multi-criteria Decision Making methodology using natural language processing and deep learning for smarter decision aid. Case study of restaurant choice using TripAdvisor reviews
被引:50
|
作者:
论文数: 引用数:
h-index:
机构:
Zuheros, Cristina
[1
]
Martinez-Camara, Eugenio
论文数: 0引用数: 0
h-index: 0
机构:
Univ Granada, Andalusian Res Inst Data Sci & Computat Intellige, Granada 18071, SpainUniv Granada, Andalusian Res Inst Data Sci & Computat Intellige, Granada 18071, Spain
Martinez-Camara, Eugenio
[1
]
Herrera-Viedma, Enrique
论文数: 0引用数: 0
h-index: 0
机构:
Univ Granada, Andalusian Res Inst Data Sci & Computat Intellige, Granada 18071, SpainUniv Granada, Andalusian Res Inst Data Sci & Computat Intellige, Granada 18071, Spain
Herrera-Viedma, Enrique
[1
]
Herrera, Francisco
论文数: 0引用数: 0
h-index: 0
机构:
Univ Granada, Andalusian Res Inst Data Sci & Computat Intellige, Granada 18071, SpainUniv Granada, Andalusian Res Inst Data Sci & Computat Intellige, Granada 18071, Spain
Herrera, Francisco
[1
]
机构:
[1] Univ Granada, Andalusian Res Inst Data Sci & Computat Intellige, Granada 18071, Spain
Multi-person multi-criteria decision making;
Aspect-based sentiment analysis;
Smarter decision aid;
Multi-task deep learning;
Social media;
NETWORK;
CHALLENGES;
TAXONOMY;
D O I:
10.1016/j.inffus.2020.10.019
中图分类号:
TP18 [人工智能理论];
学科分类号:
081104 ;
0812 ;
0835 ;
1405 ;
摘要:
Decision making models are constrained by taking the expert evaluations with pre-defined numerical or linguistic terms. We claim that the use of sentiment analysis will allow decision making models to consider expert evaluations in natural language. Accordingly, we propose the Sentiment Analysis based Multi-person Multi-criteria Decision Making (SA-MpMcDM) methodology for smarter decision aid, which builds the expert evaluations from their natural language reviews, and even from their numerical ratings if they are available. The SA-MpMcDM methodology incorporates an end-to-end multi-task deep learning model for aspect based sentiment analysis, named DOC-ABSADeepL model, able to identify the aspect categories mentioned in an expert review, and to distill their opinions and criteria. The individual evaluations are aggregated via the procedure named criteria weighting through the attention of the experts. We evaluate the methodology in a case study of restaurant choice using TripAdvisor reviews, hence we build, manually annotate, and release the TripR-2020 dataset of restaurant reviews. We analyze the SA-MpMcDM methodology in different scenarios using and not using natural language and numerical evaluations. The analysis shows that the combination of both sources of information results in a higher quality preference vector.
机构:
Univ Hawaii Manoa, Water Resources Res Ctr, Dept Civil & Environm Engn, Honolulu, HI 96822 USAUniv Kurdistan, Fac Nat Resources, Dept Geomorphol, Sanandaj 6617715175, Iran
Bateni, Sayed M.
Hashim, Mazlan
论文数: 0引用数: 0
h-index: 0
机构:
Univ Teknol Malaysia UTM, Res Inst Sustainabil & Environm RISE, Geosci & Digital Earth Ctr INSTeG, Johor Baharu 81310, Malaysia
Univ Teknol Malaysia UTM, Fac Built Environm & Surveying, Johor Baharu 81310, MalaysiaUniv Kurdistan, Fac Nat Resources, Dept Geomorphol, Sanandaj 6617715175, Iran
机构:
Univ Ibadan, Fac Technol, Dept Elect & Elect Engn, Power Energy Machines & Drives Res Grp, Ibadan, NigeriaUniv Ibadan, Fac Technol, Dept Elect & Elect Engn, Power Energy Machines & Drives Res Grp, Ibadan, Nigeria
Alao, M. A.
Ayodele, T. R.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Ibadan, Fac Technol, Dept Elect & Elect Engn, Power Energy Machines & Drives Res Grp, Ibadan, NigeriaUniv Ibadan, Fac Technol, Dept Elect & Elect Engn, Power Energy Machines & Drives Res Grp, Ibadan, Nigeria