Finite-Time Stability of a Time-Delay Fractional-Order Hydraulic Turbine Regulating System

被引:8
|
作者
Chen, Peng [1 ,2 ]
Wang, Bin [1 ,2 ]
Tian, Yuqiang [1 ]
Yang, Ying [1 ]
机构
[1] Northwest A&F Univ, Coll Water Resources & Architectural Engn, Yangling 712100, Shaanxi, Peoples R China
[2] Northwest A&F Univ, Key Lab Agr Soil & Water Engn Arid & Semiarid Are, Minist Educ, Yangling 712100, Shaanxi, Peoples R China
关键词
Finite-time stability; fractional-order stability theorem; hydraulic turbine regulating system; time delay; frequency distribution model; PUMPED-STORAGE UNIT; GOVERNING SYSTEM; HYDROPOWER STATION; TRACKING CONTROL; DYNAMIC-ANALYSIS; DESIGN; CALCULUS; CONTROLLER;
D O I
10.1109/ACCESS.2019.2924141
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Finite-time terminal sliding mode control of a time-delay fractional-order hydraulic turbine regulating system (HTRS) is studied. First, an improved Adams-Bashforth-Moulton algorithm is introduced to solve the fractional-order nonlinear system with a time delay. Then, given the unique advantage of fractional calculus and the great influence that time delay has on system stability, a time-delay fractionalorder HTRS is introduced. Moreover, by means of a frequency distribution model, the transformation of the fractional-order HTRS is realized. To stabilize the system under the influence of a random disturbance, a novel terminal sliding surface and a controller are proposed, and the detailed mathematical deduction for system stability is given. Finally, the simulation results, compared with traditional proportional-integral-derivative control and the conventional sliding mode control in the existing literature, demonstrate the validity and significant advantages of the proposed finite-time control scheme.
引用
收藏
页码:82613 / 82623
页数:11
相关论文
共 50 条
  • [1] Finite-time stability of impulsive fractional-order systems with time-delay
    Hei, Xindong
    Wu, Ranchao
    APPLIED MATHEMATICAL MODELLING, 2016, 40 (7-8) : 4285 - 4290
  • [2] Finite-time stability of linear fractional-order time-delay systems
    Naifar, Omar
    Nagy, A. M.
    Ben Makhlouf, Abdellatif
    Kharrat, Mohamed
    Hammami, Mohamed Ali
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2019, 29 (01) : 180 - 187
  • [3] NEW FINITE-TIME STABILITY ANALYSIS OF STOCHASTIC FRACTIONAL-ORDER TIME-DELAY SYSTEMS
    Ben Makhlouf, Abdellatif
    Mchiri, Lassaad
    Arfaoui, Hassen
    Rguigui, Hafedh
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2023, 53 (04) : 1011 - 1018
  • [4] Finite-time stability of a class of nonlinear fractional-order system with the discrete time delay
    Wang, Feifei
    Chen, Diyi
    Zhang, Xinguang
    Wu, Yonghong
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2017, 48 (05) : 984 - 993
  • [5] Finite-Time Stability of Fractional-Order Neural Networks with Delay
    Wu Ran-Chao
    Hei Xin-Dong
    Chen Li-Ping
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2013, 60 (02) : 189 - 193
  • [6] Finite-Time Stability of Fractional-Order Neural Networks with Delay
    吴然超
    黑鑫东
    陈立平
    Communications in Theoretical Physics, 2013, 60 (08) : 189 - 193
  • [7] Finite-time stability of linear stochastic fractional-order systems with time delay
    Lassaad Mchiri
    Abdellatif Ben Makhlouf
    Dumitru Baleanu
    Mohamed Rhaima
    Advances in Difference Equations, 2021
  • [8] Finite-time stability of linear stochastic fractional-order systems with time delay
    Mchiri, Lassaad
    Ben Makhlouf, Abdellatif
    Baleanu, Dumitru
    Rhaima, Mohamed
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [9] New finite-time stability for fractional-order time-varying time-delay linear systems: A Lyapunov approach
    Gokul, P.
    Rakkiyappan, R.
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2022, 359 (14): : 7620 - 7631
  • [10] Finite-time stability analysis of fractional-order neural networks with delay
    Yang, Xujun
    Song, Qiankun
    Liu, Yurong
    Zhao, Zhenjiang
    NEUROCOMPUTING, 2015, 152 : 19 - 26