Unexpected Dependence of Photonic Band Gap Size on Randomness in Self-Assembled Colloidal Crystals

被引:12
作者
Wan, Duanduan [1 ,2 ]
Glotzer, Sharon C. [1 ,3 ,4 ,5 ]
机构
[1] Univ Michigan, Dept Chem Engn, Ann Arbor, MI 48109 USA
[2] Wuhan Univ, Sch Phys & Technol, Wuhan 430072, Peoples R China
[3] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA
[4] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA
[5] Univ Michigan, Biointerfaces Inst, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
PATCHY PARTICLES; SYMMETRY; NANOCRYSTALS; BEHAVIOR; SQUARE; PHASES;
D O I
10.1103/PhysRevLett.126.208002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Using computer simulations, we explore how thermal noise-induced randomness in a self-assembled photonic crystal affects its photonic band gaps (PBGs). We consider a two-dimensional photonic crystal composed of a self-assembled array of parallel dielectric hard rods of infinite length with circular or square cross section. We find that PBGs can exist over a large range of intermediate packing densities and the largest band gap does not always appear at the highest packing density studied. Remarkably, for rods with square cross section at intermediate packing densities, the transverse magnetic (TM) band gap of the self-assembled (i.e., thermal) system can be larger than that of identical rods arranged in a perfect square lattice. By considering hollow rods, we find the band gap of transverse electric modes can be substantially increased while that of TM modes show no obvious improvement over solid rods. Our study suggests that particle shape and internal structure can be used to engineer the PBG of a self-assembled system despite the positional and orientational randomness arising from thermal noise.
引用
收藏
页数:6
相关论文
共 57 条
  • [21] Disordered, quasicrystalline and crystalline phases of densely packed tetrahedra
    Haji-Akbari, Amir
    Engel, Michael
    Keys, Aaron S.
    Zheng, Xiaoyu
    Petschek, Rolfe G.
    Palffy-Muhoray, Peter
    Glotzer, Sharon C.
    [J]. NATURE, 2009, 462 (7274) : 773 - U91
  • [22] He XW, 2016, NAT NANOTECHNOL, V11, P633, DOI [10.1038/nnano.2016.44, 10.1038/NNANO.2016.44]
  • [23] Henzie J, 2012, NAT MATER, V11, P131, DOI [10.1038/NMAT3178, 10.1038/nmat3178]
  • [24] Dimer-Based Three-Dimensional Photonic Crystals
    Hosein, Ian D.
    Lee, Stephanie H.
    Liddell, Chekesha M.
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2010, 20 (18) : 3085 - 3091
  • [25] Self-assembly route for photonic crystals with a bandgap in the visible region
    Hynninen, Antti-Pekka
    Thijssen, Job H. J.
    Vermolen, Esther C. M.
    Dijkstra, Marjolein
    Van Blaaderen, Alfons
    [J]. NATURE MATERIALS, 2007, 6 (03) : 202 - 205
  • [26] Joannopoulos JD, 2008, PHOTONIC CRYSTALS: MOLDING THE FLOW OF LIGHT, 2ND EDITION, P1
  • [27] Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis
    Johnson, SG
    Joannopoulos, JD
    [J]. OPTICS EXPRESS, 2001, 8 (03): : 173 - 190
  • [28] Self-assembled colloidal structures for photonics
    Kim, Shin-Hyun
    Lee, Su Yeon
    Yang, Seung-Man
    Yi, Gi-Ra
    [J]. NPG ASIA MATERIALS, 2011, 3 (01) : 25 - 33
  • [29] Surface roughness directed self-assembly of patchy particles into colloidal micelles
    Kraft, Daniela J.
    Ni, Ran
    Smallenburg, Frank
    Hermes, Michiel
    Yoon, Kisun
    Weitz, David A.
    van Blaaderen, Alfons
    Groenewold, Jan
    Dijkstra, Marjolein
    Kegel, Willem K.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (27) : 10787 - 10792
  • [30] Self-Assembled Chiral Photonic Crystals from a Colloidal Helix Racemate
    Lei, Qun-li
    Ni, Ran
    Ma, Yu-qiang
    [J]. ACS NANO, 2018, 12 (07) : 6860 - 6870