Asymptotic Tail Probabilities of Sums of Dependent Subexponential Random Variables

被引:115
作者
Geluk, Jaap [2 ]
Tang, Qihe [1 ]
机构
[1] Univ Iowa, Dept Stat & Actuarial Sci, Iowa City, IA 52242 USA
[2] Petr Inst, Dept Math, Abu Dhabi, U Arab Emirates
关键词
Asymptotic tail probability; Convolution; Dominated variation; Farlie-Gumbel-Morgenstern family; Subexponentiality; RANDOM-WALKS; DISTRIBUTIONS; INCREMENTS; BEHAVIOR;
D O I
10.1007/s10959-008-0159-5
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we study the asymptotic behavior of the tail probabilities of sums of dependent and real-valued random variables whose distributions are assumed to be subexponential and not necessarily of dominated variation. We propose two general dependence assumptions under which the asymptotic behavior of the tail probabilities of the sums is the same as that in the independent case. In particular, the two dependence assumptions are satisfied by multivariate Farlie-Gumbel-Morgenstern distributions.
引用
收藏
页码:871 / 882
页数:12
相关论文
共 29 条
[1]  
Albrecher H., 2006, EXTREMES, V9, P107
[2]  
[Anonymous], 2000, Continuous multivariate distributions, Volume 1: models and distributions
[3]   Asymptotics for sums of random variables with local subexponential behaviour [J].
Asmussen, S ;
Foss, S ;
Korshunov, D .
JOURNAL OF THEORETICAL PROBABILITY, 2003, 16 (02) :489-518
[4]  
ASMUSSEN S, 2008, STAT PROBAB IN PRESS, V78
[5]  
Asmussen S., 2000, Ruin Probabilities
[6]  
Bingham N., 1989, Regular Variation
[7]  
Chistyakov V. P., 1964, Theory of Probability Its Applications, V9, P640, DOI [10.1137/1109088, DOI 10.1137/1109088]
[8]  
Davis RA, 1996, ANN APPL PROBAB, V6, P1191
[9]   SUBEXPONENTIALITY AND INFINITE DIVISIBILITY [J].
EMBRECHTS, P ;
GOLDIE, CM ;
VERAVERBEKE, N .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1979, 49 (03) :335-347
[10]  
Embrechts P., 2008, Modelling Extremal Events