Biased Nanoscale Contact as Active Element for Electrically Driven Plasmonic Nanoantenna

被引:10
作者
Uskov, Alexander V. [1 ,2 ]
Khurgin, Jacob B. [3 ]
Buret, Mickael [4 ]
Bouhelier, Alexandre [4 ]
Smetanin, Igor V. [1 ]
Protsenko, Igor E. [1 ]
机构
[1] PN Lebedev Phys Inst, Leninsky Pr 53, Moscow 119991, Russia
[2] ITMO Univ, Kronverkskiy Pr 49, St Petersburg 197101, Russia
[3] Johns Hopkins Univ, Dept Elect & Comp Engn, Baltimore, MD USA
[4] Univ Bourgogne Franche Comte, Lab Interdisciplinaire Carnot Bourgogne, CNRS, UMR 6303, F-21078 Dijon, France
来源
ACS PHOTONICS | 2017年 / 4卷 / 06期
基金
俄罗斯科学基金会; 欧洲研究理事会;
关键词
excitation of plasmons; inelastic tunneling; mesoscopic contacts; nanoconstriction; ballistic transport; LIGHT-EMISSION; PHOTON-EMISSION; ELECTROLUMINESCENCE; EXCITATION;
D O I
10.1021/acsphotonics.7b00272
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Electrically driven optical antennas can serve as compact sources of electromagnetic radiation operating at optical frequencies. In the most widely explored configurations, the radiation is generated by electrons tunneling between metallic parts of the structure when a bias voltage is applied across the tunneling gap. Rather than relying on an inherently inefficient inelastic light emission in the gap, we suggest to use a ballistic nanoconstriction as the feed element of an optical antenna supporting plasmonic modes. We discuss the underlying mechanisms responsible for the optical emission and show that, with such a nanoscale contact, one can reach quantum efficiency orders of magnitude larger than with standard light-emitting tunneling structures.
引用
收藏
页码:1501 / 1505
页数:5
相关论文
共 25 条
[1]   Electroluminescence from single-wall carbon nanotube network transistors [J].
Adam, E. ;
Aguirre, C. M. ;
Marty, L. ;
St-Antoine, B. C. ;
Meunier, F. ;
Desjardins, P. ;
Menard, D. ;
Martel, R. .
NANO LETTERS, 2008, 8 (08) :2351-2355
[2]   Electrical Excitation of Surface Plasmons [J].
Bharadwaj, Palash ;
Bouhelier, Alexandre ;
Novotny, Lukas .
PHYSICAL REVIEW LETTERS, 2011, 106 (22)
[3]   Nanoantenna for Electrical Generation of Surface Plasmon Polaritons [J].
Bigourdan, Florian ;
Hugonin, Jean-Paul ;
Marquier, Francois ;
Sauvan, Christophe ;
Greffet, Jean-Jacques .
PHYSICAL REVIEW LETTERS, 2016, 116 (10)
[4]   Spontaneous Hot-Electron Light Emission from Electron-Fed Optical Antennas [J].
Buret, Mickael ;
Uskov, Alexander V. ;
Dellinger, Jean ;
Cazier, Nicolas ;
Mennemanteuil, Marie-Maxime ;
Berthelot, Johann ;
Smetanin, Igor V. ;
Protsenko, Igor E. ;
Colas-des-Francs, Gerard ;
Bouhelier, Alexandre .
NANO LETTERS, 2015, 15 (09) :5811-5818
[5]   GENERALIZED MANY-CHANNEL CONDUCTANCE FORMULA WITH APPLICATION TO SMALL RINGS [J].
BUTTIKER, M ;
IMRY, Y ;
LANDAUER, R ;
PINHAS, S .
PHYSICAL REVIEW B, 1985, 31 (10) :6207-6215
[6]   Electrical excitation of waveguided surface plasmons by a light-emitting tunneling optical gap antenna [J].
Cazier, N. ;
Buret, M. ;
Uskov, A. V. ;
Markey, L. ;
Arocas, J. ;
Des Francs, G. Colas ;
Bouhelier, A. .
OPTICS EXPRESS, 2016, 24 (04) :3873-3884
[7]   Enhanced noise at high bias in atomic-scale Au break junctions [J].
Chen, Ruoyu ;
Wheeler, Patrick J. ;
Di Ventra, M. ;
Natelson, D. .
SCIENTIFIC REPORTS, 2014, 4
[8]   Towards integrated nanoplasmonic logic circuitry [J].
Cohen, Moshik ;
Zalevsky, Zeev ;
Shavit, Reuven .
NANOSCALE, 2013, 5 (12) :5442-5449
[9]  
Datta S., 1997, Electronic Transport in Mesoscopic Systems, DOI DOI 10.1063/1.2807624
[10]   Hot carrier electroluminescence from a single carbon nanotube [J].
Freitag, M ;
Perebeinos, V ;
Chen, J ;
Stein, A ;
Tsang, JC ;
Misewich, JA ;
Martel, R ;
Avouris, P .
NANO LETTERS, 2004, 4 (06) :1063-1066