Electrochemically engineering defect-rich nickel-iron layered double hydroxides as a whole water splitting electrocatalyst

被引:17
作者
Shi, Bo [1 ]
Han, Xinqi [1 ]
He, Xingquan [1 ]
Cui, Lili [1 ]
机构
[1] Changchun Univ Sci & Technol, Sch Chem & Environm Engn, Key Lab Appl Chem & Nanotechnol Univ Jilin Prov, Changchun 130022, Jilin, Peoples R China
基金
中国博士后科学基金;
关键词
Layered double hydroxides; Defects; Oxygen evolution reaction; Hydrogen evolution; Water splitting; BIFUNCTIONAL ELECTROCATALYSTS; HIGH-PERFORMANCE; EFFICIENT; OXYGEN; NANOSHEETS; ELECTRODE; CONSTRUCTION; OXIDATION; CATALYSTS; VACANCIES;
D O I
10.1016/j.ijhydene.2019.07.082
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
It is well proved that fabricating more defects on basal plane of layered double hydroxides (LDHs) is one of effective ways to boost the electrocatalytic performance for oxygen evolution reaction (OER). For the first time, the nickel iron LDHs (NiFe LDHs) with hierarchical morphology and abundant defects are simultaneously constructed by one-step electro-deposition (ED) strategy with easy operation, time-saving and green chemistry. Remarkably, the morphology is elaborately tailored by changing the species of doped anions which is unique. Also, the X-ray photoelectron spectroscopy (XPS) results elucidate that the Fe sites are in electron-rich state in LDHs which is revealed to enhance the catalytic activity strongly arising from the generation of oxygen vacancy. To deliver the current density of 10 mA cm(-2), the optimal NiFe LDHs require the overpotential of 128, 106 mV for OER and hydrogen evolution reaction (HER), and achieve 100 mA cm(-2) at the overpotential of 237, 242 mV, respectively. As a bifunctional electrocatalyst, the NiFe LDHs exhibit the current density of 10 mA cm(-2) at a cell voltage of 1.55 V and 100 mA cm(-2) at 1.76 V, which are lower than that of most of benchmarking materials reported previously. (C) 2019 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:23689 / 23698
页数:10
相关论文
共 62 条
[1]   Interconnected Hollow Cobalt Phosphide Grown on Carbon Nanotubes for Hydrogen Evolution Reaction [J].
Adam, Alaaldin ;
Suliman, Munzir H. ;
Siddiqui, Mohammad N. ;
Yamani, Zain H. ;
Merzougui, Belabbes ;
Qamar, Mohammad .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (35) :29407-29416
[2]   Hollow Multivoid Nanocuboids Derived from Ternary Ni-Co-Fe Prussian Blue Analog for Dual-Electrocatalysis of Oxygen and Hydrogen Evolution Reactions [J].
Ahn, Wook ;
Park, Moon Gyu ;
Lee, Dong Un ;
Seo, Min Ho ;
Jiang, Gaopeng ;
Cano, Zachary P. ;
Hassan, Fathy Mohamed ;
Chen, Zhongwei .
ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (28)
[3]   Precision and correctness in the evaluation of electrocatalytic water splitting: revisiting activity parameters with a critical assessment [J].
Anantharaj, S. ;
Ede, S. R. ;
Karthick, K. ;
Sankar, S. Sam ;
Sangeetha, K. ;
Karthik, P. E. ;
Kundu, Subrata .
ENERGY & ENVIRONMENTAL SCIENCE, 2018, 11 (04) :744-771
[4]   Ultrathin Spinel-Structured Nanosheets Rich in Oxygen Deficiencies for Enhanced Electrocatalytic Water Oxidation [J].
Bao, Jian ;
Zhang, Xiaodong ;
Fan, Bo ;
Zhang, Jiajia ;
Zhou, Min ;
Yang, Wenlong ;
Hu, Xin ;
Wang, Hui ;
Pan, Bicai ;
Xie, Yi .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (25) :7399-7404
[5]   Chemically prepared Polypyrrole/ZnWO4 nanocomposite electrodes for electrocatalytic water splitting [J].
Brijesh, K. ;
Bindu, K. ;
Shanbhag, Dhanush ;
Nagaraja, H. S. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (02) :757-767
[6]   Introducing Fe2+ into Nickel-Iron Layered Double Hydroxide: Local Structure Modulated Water Oxidation Activity [J].
Cai, Zhao ;
Zhou, Daojin ;
Wang, Maoyu ;
Bak, Seong-Min ;
Wu, Yueshen ;
Wu, Zishan ;
Tian, Yang ;
Xiong, Xuya ;
Li, Yaping ;
Liu, Wen ;
Siahrostami, Samira ;
Kuang, Yun ;
Yang, Xiao-Qing ;
Duan, Haohong ;
Feng, Zhenxing ;
Wang, Hailiang ;
Sun, Xiaoming .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (30) :9392-9396
[7]   The Origin of Improved Electrical Double-Layer Capacitance by Inclusion of Topological Defects and Dopants in Graphene for Supercapacitors [J].
Chen, Jiafeng ;
Han, Yulei ;
Kong, Xianghua ;
Deng, Xinzhou ;
Park, Hyo Ju ;
Guo, Yali ;
Jin, Song ;
Qi, Zhikai ;
Lee, Zonghoon ;
Qiao, Zhenhua ;
Ruoff, Rodney S. ;
Ji, Hengxing .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (44) :13822-13827
[8]   Facile synthesis of pyrite-type binary nickel iron diselenides as efficient electrocatalyst for oxygen evolution reaction [J].
Chi, Jing-Qi ;
Shang, Xiao ;
Liang, Fei ;
Dong, Bin ;
Li, Xiao ;
Liu, Yan-Ru ;
Yan, Kai-Li ;
Gao, Wen-Kun ;
Chai, Yong-Ming ;
Liu, Chen-Guang .
APPLIED SURFACE SCIENCE, 2017, 401 :17-24
[9]   Hierarchical Nanostructures: Design for Sustainable Water Splitting [J].
Fang, Ming ;
Dong, Guofa ;
Wei, Renjie ;
Ho, Johnny C. .
ADVANCED ENERGY MATERIALS, 2017, 7 (23)
[10]   High-Index Faceted Ni3S2 Nanosheet Arrays as Highly Active and Ultrastable Electrocatalysts for Water Splitting [J].
Feng, Liang-Liang ;
Yu, Guangtao ;
Wu, Yuanyuan ;
Li, Guo-Dong ;
Li, Hui ;
Sun, Yuanhui ;
Asefa, Tewodros ;
Chen, Wei ;
Zou, Xiaoxin .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (44) :14023-14026