Wannier functions analysis of the nonlinear Schrodinger equation with a periodic potential

被引:201
作者
Alfimov, GL [1 ]
Kevrekidis, PG
Konotop, VV
Salerno, M
机构
[1] FV Lukins Inst Phys Problems, Moscow 103460, Russia
[2] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA
[3] Univ Lisbon, Dept Fis, P-1649003 Lisbon, Portugal
[4] Univ Lisbon, Ctr Fis Mat Condensada, P-1649003 Lisbon, Portugal
[5] Univ Salerno, Dipartimento Fis ER Caianiello, I-84081 Baronissi, Salerno, Italy
[6] INFM, Unita Salerno, Salerno, Italy
来源
PHYSICAL REVIEW E | 2002年 / 66卷 / 04期
关键词
D O I
10.1103/PhysRevE.66.046608
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In the present paper we use the Wannier function basis to construct lattice approximations of the nonlinear Schrodinger equation with a periodic potential. We show that the nonlinear Schrodinger equation with a periodic potential is equivalent to a vector lattice with long-range interactions. For the case-example of the cosine potential we study the validity of the so-called tight-binding approximation, i.e., the approximation when nearest neighbor interactions are dominant. The results are relevant to the Bose-Einstein condensate theory as well as to other physical systems, such as, for example, electromagnetic wave propagation in nonlinear photonic crystals.
引用
收藏
页数:6
相关论文
共 22 条
  • [1] Nonlinear excitations in arrays of Bose-Einstein condensates
    Abdullaev, FK
    Baizakov, BB
    Darmanyan, SA
    Konotop, VV
    Salerno, M
    [J]. PHYSICAL REVIEW A, 2001, 64 (04) : 436061 - 4360610
  • [2] On the existence of gap solitons
    Alfimov, G
    Konotop, VV
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2000, 146 (1-4) : 307 - 327
  • [3] Matter solitons in Bose-Einstein condensates with optical lattices
    Alfimov, GL
    Konotop, VV
    Salerno, M
    [J]. EUROPHYSICS LETTERS, 2002, 58 (01): : 7 - 13
  • [4] Macroscopic quantum interference from atomic tunnel arrays
    Anderson, BP
    Kasevich, MA
    [J]. SCIENCE, 1998, 282 (5394) : 1686 - 1689
  • [5] Composite catalyst surfaces: Effect of inert and active heterogeneities on pattern formation
    Bar, M
    Bangia, AK
    Kevrekidis, IG
    Haas, G
    Rotermund, HH
    Ertl, G
    [J]. JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (49) : 19106 - 19117
  • [6] Collective excitations of a periodic Bose condensate in the Wannier representation
    Chiofalo, ML
    Polini, M
    Tosi, MP
    [J]. EUROPEAN PHYSICAL JOURNAL D, 2000, 11 (03) : 371 - 378
  • [7] STATIONARY WAVES IN A NONLINEAR PERIODIC MEDIUM - STRONG RESONANCES AND LOCALIZED STRUCTURES .1. THE DISCRETE MODEL
    COSTE, J
    PEYRAUD, J
    [J]. PHYSICAL REVIEW B, 1989, 39 (18): : 13086 - 13095
  • [8] Theory of Bose-Einstein condensation in trapped gases
    Dalfovo, F
    Giorgini, S
    Pitaevskii, LP
    Stringari, S
    [J]. REVIEWS OF MODERN PHYSICS, 1999, 71 (03) : 463 - 512
  • [9] Cold bosonic atoms in optical lattices
    Jaksch, D
    Bruder, C
    Cirac, JI
    Gardiner, CW
    Zoller, P
    [J]. PHYSICAL REVIEW LETTERS, 1998, 81 (15) : 3108 - 3111
  • [10] Heterogeneous versus discrete mapping problem
    Kevrekidis, P.G.
    Kevrekidis, I.G.
    [J]. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2001, 64 (5 II): : 1 - 056624