Reinforcement learning and Bayesian data assimilation for model-informed precision dosing in oncology

被引:29
|
作者
Maier, Corinna [1 ,2 ,3 ]
Hartung, Niklas [1 ]
Kloft, Charlotte [4 ]
Huisinga, Wilhelm [1 ]
de Wiljes, Jana [1 ]
机构
[1] Univ Potsdam, Inst Math, Karl Liebknecht Str 24-25, D-14476 Potsdam, Germany
[2] Free Univ Berlin, Grad Res Training Program PharMetrX Pharmacometr, Potsdam, Germany
[3] Univ Potsdam, Potsdam, Germany
[4] Free Univ Berlin, Inst Pharm, Dept Clin Pharm & Biochem, Berlin, Germany
来源
CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY | 2021年 / 10卷 / 03期
关键词
D O I
10.1002/psp4.12588
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Model-informed precision dosing (MIPD) using therapeutic drug/biomarker monitoring offers the opportunity to significantly improve the efficacy and safety of drug therapies. Current strategies comprise model-informed dosing tables or are based on maximum a posteriori estimates. These approaches, however, lack a quantification of uncertainty and/or consider only part of the available patient-specific information. We propose three novel approaches for MIPD using Bayesian data assimilation (DA) and/or reinforcement learning (RL) to control neutropenia, the major dose-limiting side effect in anticancer chemotherapy. These approaches have the potential to substantially reduce the incidence of life-threatening grade 4 and subtherapeutic grade 0 neutropenia compared with existing approaches. We further show that RL allows to gain further insights by identifying patient factors that drive dose decisions. Due to its flexibility, the proposed combined DA-RL approach can easily be extended to integrate multiple end points or patient-reported outcomes, thereby promising important benefits for future personalized therapies.
引用
收藏
页码:241 / 254
页数:14
相关论文
共 50 条
  • [1] Model-Informed Artificial Intelligence: Reinforcement Learning for Precision Dosing
    Ribba, Benjamin
    Dudal, Sherri
    Lave, Thierry
    Peck, Richard W.
    CLINICAL PHARMACOLOGY & THERAPEUTICS, 2020, 107 (04) : 853 - 857
  • [2] Model-Informed Reinforcement Learning for Enabling Precision Dosing Via Adaptive Dosing
    Tosca, Elena Maria
    De Carlo, Alessandro
    Ronchi, Davide
    Magni, Paolo
    CLINICAL PHARMACOLOGY & THERAPEUTICS, 2024, 116 (03) : 619 - 636
  • [3] Model-Informed Precision Dosing (MIPD)
    Perez-Blanco, Jonas Samuel
    Lanao, Jose M.
    PHARMACEUTICS, 2022, 14 (12)
  • [4] Model-informed precision dosing in vancomycin treatment
    Yoon, Sukyong
    Guk, Jinju
    Lee, Sang-Guk
    Chae, Dongwoo
    Kim, Jeong-Ho
    Park, Kyungsoo
    FRONTIERS IN PHARMACOLOGY, 2023, 14
  • [5] Continuous Learning in Model-Informed Precision Dosing: A Case Study in Pediatric Dosing of Vancomycin
    Hughes, Jasmine H.
    Tong, Dominic M. H.
    Lucas, Sarah Scarpace
    Faldasz, Jonathan D.
    Goswami, Srijib
    Keizer, Ron J.
    CLINICAL PHARMACOLOGY & THERAPEUTICS, 2021, 109 (01) : 233 - 242
  • [6] Virtual Twins: Understanding the Data Required for Model-Informed Precision Dosing
    Polasek, Thomas M.
    Rostami-Hodjegan, Amin
    CLINICAL PHARMACOLOGY & THERAPEUTICS, 2020, 107 (04) : 742 - 745
  • [7] Limited sampling in model-informed precision dosing of busulfan
    Wansing, E.
    Langebrake, C.
    Kroeger, N.
    Wicha, S. G.
    Dadkhah, A.
    BONE MARROW TRANSPLANTATION, 2022, 57 (SUPPL 1) : 455 - 455
  • [8] MODEL-INFORMED PRECISION DOSING AT THE BEDSIDE: CHALLENGES AND OPPORTUNITIES
    Lesko, Lawrence J.
    DRUG METABOLISM AND PHARMACOKINETICS, 2020, 35 (01) : S5 - S5
  • [9] Towards Model-informed Precision Dosing with Expert-in-the-loop Machine Learning
    Kan, Yihuang
    Chiu, Yi-Wen
    Lin, Ming-Yen
    Su, Fang-yi
    Huang, Sheng-Tai
    2021 IEEE 22ND INTERNATIONAL CONFERENCE ON INFORMATION REUSE AND INTEGRATION FOR DATA SCIENCE (IRI 2021), 2021, : 342 - 347
  • [10] Model-Informed Precision Dosing of Antibiotics in Osteoarticular Infections
    Liu, Lingling
    Wang, Jin
    Zhang, Huan
    Chen, Mengli
    Cai, Yun
    INFECTION AND DRUG RESISTANCE, 2022, 15 : 99 - 110