1.4-mJ High Energy Terahertz Radiation from Lithium Niobates

被引:138
作者
Zhang, Baolong [1 ,3 ]
Ma, Zhenzhe [2 ]
Ma, Jinglong [1 ]
Wu, Xiaojun [2 ,8 ]
Ouyang, Chen [1 ,3 ]
Kong, Deyin [2 ]
Hong, Tianshu [2 ]
Wang, Xuan [1 ,4 ]
Yang, Peidi [2 ]
Chen, Liming [5 ,6 ]
Li, Yutong [1 ,3 ,4 ,6 ,7 ]
Zhang, Jie [1 ,5 ,6 ]
机构
[1] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China
[2] Beihang Univ, Sch Elect & Informat Engn, Beijing 100191, Peoples R China
[3] Univ Chinese Acad Sci, Sch Phys Sci, Beijing 100049, Peoples R China
[4] Songshan Lake Mat Lab, Dongguan 523808, Peoples R China
[5] Shanghai Jiao Tong Univ, Sch Phys & Astron, Key Lab Laser Plasmas MOE, Shanghai 200240, Peoples R China
[6] Shanghai Jiao Tong Univ, Collaborat Innovat Ctr, IFSA, Shanghai 200240, Peoples R China
[7] CAS Ctr Excellence Ultraintense Laser Sci, Shanghai 201800, Peoples R China
[8] Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Wuhan 430074, Peoples R China
关键词
lithium niobate; nonlinear optics; strong field; Terahertz; OPTICAL RECTIFICATION; EFFICIENT GENERATION; THZ PULSES; DRIVEN; MANIPULATION; TEMPERATURE; CRYSTALS; LIGHT; INDEX;
D O I
10.1002/lpor.202000295
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Free-space super-strong terahertz (THz) electromagnetic fields offer multifaceted capabilities for reaching extreme nonlinear THz optics. However, the lack of powerful solid-state THz sources with single pulse energy >1 mJ is impeding the proliferation of extreme THz applications. The fundamental challenge lies in hard to achieve high efficiency due to high intensity pumping caused crystal damage, linear absorption, and nonlinear distortion induced short effective interaction length, and so on. Here, through cryogenically cooling the crystals, tailoring the pump laser spectra, chirping the pump pulses, and magnifying the laser energies, 1.4-mJ THz pulses are successfully realized in lithium niobates under the excitation of 214-mJ femtosecond laser pulses via tilted pulse front technique. The 800 nm-to-THz energy conversion efficiency reaches 0.7%, and a free-space THz peak electric and magnetic field reaches 6.3 MV cm(-1) and 2.1 Tesla. Numerical simulations reproduce the experimental optimization processes. To show the capability of this super-strong THz source, nonlinear absorption in high conductive silicon induced by strong THz electric field is demonstrated. Such a high-energy THz source with a relatively low peak frequency is very appropriate not only for electron acceleration toward table-top X-ray sources but also for extreme THz science and nonlinear applications.
引用
收藏
页数:11
相关论文
共 68 条
[41]   Terahertz-Driven Luminescence and Colossal Stark Effect in CdSe-CdS Colloidal Quantum Dots [J].
Pein, Brandt C. ;
Chang, Wendi ;
Hwang, Harold Y. ;
Scherer, Jennifer ;
Coropceanu, Igor ;
Zhao, Xiaoguang ;
Zhang, Xin ;
Bulovic, Vladimir ;
Bawendi, Moungi ;
Nelson, Keith A. .
NANO LETTERS, 2017, 17 (09) :5375-5380
[42]   High-energy terahertz pulses from semiconductors pumped beyond the three-photon absorption edge [J].
Polonyi, Gy. ;
Monoszlai, B. ;
Gaumann, G. ;
Rohwer, E. J. ;
Andriukaitis, G. ;
Balciunas, T. ;
Pugzlys, A. ;
Baltuska, A. ;
Feurer, T. ;
Hebling, J. ;
Fulop, J. A. .
OPTICS EXPRESS, 2016, 24 (21) :23872-23882
[43]   Theory of terahertz generation by optical rectification using tilted-pulse-fronts [J].
Ravi, Koustuban ;
Huang, Wenqian Ronny ;
Carbajo, Sergio ;
Nanni, Emilio A. ;
Schimpf, Damian N. ;
Ippen, Erich P. ;
Kaertner, Franz. X. .
OPTICS EXPRESS, 2015, 23 (04) :5253-5276
[44]   Subcycle observation of lightwave-driven Dirac currents in a topological surface band [J].
Reimann, J. ;
Schlauderer, S. ;
Schmid, C. P. ;
Langer, F. ;
Baierl, S. ;
Kokh, K. A. ;
Tereshchenko, O. E. ;
Kimura, A. ;
Lange, C. ;
Guedde, J. ;
Hoefer, U. ;
Huber, R. .
NATURE, 2018, 562 (7727) :396-+
[45]   Intense sub-terahertz radiation from wide-bandgap semiconductor based large-aperture photoconductive antennas pumped by UV lasers [J].
Ropagnol, X. ;
Kovacs, Zs ;
Gilicze, B. ;
Zhuldybina, M. ;
Blanchard, F. ;
Garcia-Rosas, C. M. ;
Szatmari, S. ;
Foldes, I. B. ;
Ozaki, T. .
NEW JOURNAL OF PHYSICS, 2019, 21 (11)
[46]  
Sato M, 2013, NAT PHOTONICS, V7, P724, DOI [10.1038/NPHOTON.2013.213, 10.1038/nphoton.2013.213]
[47]   Far infrared properties of electro-optic crystals measured by THz time-domain spectroscopy [J].
Schall, M ;
Helm, H ;
Keiding, SR .
INTERNATIONAL JOURNAL OF INFRARED AND MILLIMETER WAVES, 1999, 20 (04) :595-604
[48]   Terahertz-Field-Induced Time Shifts in Atomic Photoemission [J].
Schmid, Georg ;
Schnorr, Kirsten ;
Augustin, Sven ;
Meister, Severin ;
Lindenblatt, Hannes ;
Trost, Florian ;
Liu, Yifan ;
Stojanovic, Nikola ;
Al-Shemmary, Alaa ;
Golz, Torsten ;
Treusch, Rolf ;
Gensch, Michael ;
Kuebel, Matthias ;
Foucar, Lutz ;
Rudenko, Artem ;
Ullrich, Joachim ;
Schroeter, Claus Dieter ;
Pfeifer, Thomas ;
Moshammer, Robert .
PHYSICAL REVIEW LETTERS, 2019, 122 (07)
[49]   Terahertz integrated electronic and hybrid electronic-photonic systems [J].
Sengupta, Kaushik ;
Nagatsuma, Tadao ;
Mittleman, Daniel M. .
NATURE ELECTRONICS, 2018, 1 (12) :622-635
[50]   An ultrafast symmetry switch in a Weyl semimetal [J].
Sie, Edbert J. ;
Nyby, Clara M. ;
Pemmaraju, C. D. ;
Park, Su Ji ;
Shen, Xiaozhe ;
Yang, Jie ;
Hoffmann, Matthias C. ;
Ofori-Okai, B. K. ;
Li, Renkai ;
Reid, Alexander H. ;
Weathersby, Stephen ;
Mannebach, Ehren ;
Finney, Nathan ;
Rhodes, Daniel ;
Chenet, Daniel ;
Antony, Abhinandan ;
Balicas, Luis ;
Hone, James ;
Devereaux, Thomas P. ;
Heinz, Tony F. ;
Wang, Xijie ;
Lindenberg, Aaron M. .
NATURE, 2019, 565 (7737) :61-+