Effect of silver doping by ion implantation on graphene nanoplatelets properties

被引:0
作者
Kukhta, A., V [1 ]
Maksimenko, S. A. [1 ]
Taoubi, M., I [1 ,2 ]
Harb, M. [3 ]
Cataldo, A. [4 ]
Bellucci, S. [4 ]
Nuzhdin, V., I [5 ]
Valeev, V. F. [5 ]
Stepanov, A. L. [5 ,6 ]
机构
[1] Belarusian State Univ, Res Inst Nucl Problems, Minsk, BELARUS
[2] Lebanese Univ, Fac Sci 5, Elnabatieh, Lebanon
[3] KAUST, Phys Sci & Engn Div PSE, Catalysis Ctr KCC, Thuwal, Saudi Arabia
[4] Natl Inst Nucl Phys, Frascati Natl Lab, Frascati, Italy
[5] Russian Acad Sci, Kazan Phys Tech Inst, Kazan, Russia
[6] Kazan Natl Res Technol Univ, Kazan, Russia
来源
OPTOELECTRONICS AND ADVANCED MATERIALS-RAPID COMMUNICATIONS | 2019年 / 13卷 / 5-6期
基金
俄罗斯科学基金会;
关键词
Graphene; Silver; Implantation; Morphology; Conductivity; Simulation; RAMAN-SPECTROSCOPY; ELECTRON; OXIDE;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The structural, electronic and optical properties of thin films based on chemically clean graphene nanoplatelets (GNP) doped by silver ion implantation with relatively low energies have been studied. The silver dopant percentage relatively carbon of 1.18 % has been achieved. The surface of the nanoplatelets was found to be not plane, and there are many areas with different local orientation. Big holes in the GNP surface have been appeared as a result of ion implantation, and metal nanoparticles have been formed. The conductivity of the graphene sheet after ion implantation was found to be lowered by the presence of such graphene lattice defects. It has been concluded that the essential changes of GNP structure occur during the ion implantation process, what is confirmed by electron microscopic, Raman and electrophysical measurements, as well as theoretical consideration.
引用
收藏
页码:354 / 358
页数:5
相关论文
共 30 条
[1]   CONFORMATIONAL-ANALYSIS .130. MM2 - HYDROCARBON FORCE-FIELD UTILIZING V1 AND V2 TORSIONAL TERMS [J].
ALLINGER, NL .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1977, 99 (25) :8127-8134
[2]  
[Anonymous], 1985, SRIM-The stopping and range of ions in solids pergamon press
[3]   Ion Implantation of Graphene-Toward IC Compatible Technologies [J].
Bangert, U. ;
Pierce, W. ;
Kepaptsoglou, D. M. ;
Ramasse, Q. ;
Zan, R. ;
Gass, M. H. ;
Van den Berg, J. A. ;
Boothroyd, C. B. ;
Amani, J. ;
Hofsaess, H. .
NANO LETTERS, 2013, 13 (10) :4902-4907
[4]   Doping of few-layered graphene and carbon nanotubes using ion implantation [J].
Bangert, U. ;
Bleloch, A. ;
Gass, M. H. ;
Seepujak, A. ;
van den Berg, J. .
PHYSICAL REVIEW B, 2010, 81 (24)
[5]   Applications of Graphene at Microwave Frequencies [J].
Bozzi, Maurizio ;
Pierantoni, Luca ;
Bellucci, Stefano .
RADIOENGINEERING, 2015, 24 (03) :661-669
[6]   Ion beam induced defects in graphene: Raman spectroscopy and DFT calculations [J].
Compagnini, Giuseppe ;
Forte, Giuseppe ;
Giannazzo, Filippo ;
Raineri, Vito ;
La Magna, Antonino ;
Deretzis, Iannis .
JOURNAL OF MOLECULAR STRUCTURE, 2011, 993 (1-3) :506-509
[7]   Nanocomposites of epoxy resin with graphene nanoplates and exfoliated graphite: Synthesis and electrical properties [J].
Dabrowska, Agnieszka ;
Bellucci, Stefano ;
Cataldo, Antonino ;
Micciulla, Federico ;
Huczko, Andrzej .
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2014, 251 (12) :2599-2602
[8]   Graphene synthesis by ion implantation [J].
Garaj, Slaven ;
Hubbard, William ;
Golovchenko, J. A. .
APPLIED PHYSICS LETTERS, 2010, 97 (18)
[9]   Graphene-ultrasmall silver nanoparticle interactions and their effect on electronic transport and Raman enhancement [J].
Jimenez-Villacorta, F. ;
Climent-Pascual, E. ;
Ramirez-Jimenez, R. ;
Sanchez-Marcos, J. ;
Prieto, C. ;
de Andres, A. .
CARBON, 2016, 101 :305-314
[10]   Preparation of functional composite materials based on chemically derived graphene using solution process [J].
Kim, M. ;
Hyun, W. J. ;
Mun, S. C. ;
Parka, O. O. .
1ST INTERNATIONAL CONFERENCE ON RHEOLOGY AND MODELING OF MATERIALS (IC-RMM1), 2015, 602