An asymptotic preserving scheme for the Kac model of the Boltzmann equation in the diffusion limit

被引:10
作者
Bennoune, Mounir [1 ]
Lemou, Mohammed [2 ]
Mieussens, Luc [3 ]
机构
[1] Univ Toulouse 3, Inst Math Toulouse, UMR 5219, F-31062 Toulouse 9, France
[2] Univ Rennes 1, IRMAR, UMR 6625, F-35042 Rennes, France
[3] Univ Bordeaux, UMR 5251, Inst Math Bordeaux, F-33405 Talence, France
关键词
Kac equation; Diffusion limit; Hilbert expansion; Asymptotic preserving schemes; Micro-macro decomposition; KINETIC-EQUATIONS; NUMERICAL SCHEMES;
D O I
10.1007/s00161-009-0116-2
中图分类号
O414.1 [热力学];
学科分类号
摘要
In this article, we propose a numerical scheme to solve the Kac model of the Boltzmann equation for multiscale rarefied gas dynamics. Formally, this scheme is shown to be uniformly stable with respect to the Knudsen number, consistent with the fluid-diffusion limit for small Knudsen numbers, and with the Kac equation in the kinetic regime. Our approach is based on the micro-macro decomposition which leads to an equivalent formulation of the Kac model that couples a kinetic equation with macroscopic ones. This method is validated with various test cases and compared to other standard methods.
引用
收藏
页码:401 / 421
页数:21
相关论文
共 26 条
[1]  
[Anonymous], LECT APPL MATH
[2]   FLUID DYNAMIC LIMITS OF KINETIC-EQUATIONS .1. FORMAL DERIVATIONS [J].
BARDOS, C ;
GOLSE, F ;
LEVERMORE, D .
JOURNAL OF STATISTICAL PHYSICS, 1991, 63 (1-2) :323-344
[3]  
BENNOUNE M, 2009, THESIS U P SABATIER
[4]   Uniformly stable numerical schemes for the Boltzmann equation preserving the compressible Navier-Stokes asymptotics [J].
Bennoune, Mounir ;
Lemou, Mohammed ;
Mieussens, Luc .
JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 227 (08) :3781-3803
[5]  
BOBYLEV AV, 1975, DOKL AKAD NAUK SSSR+, V225, P1296
[6]   Uniformly accurate schemes for hyperbolic systems with relaxation [J].
Caflisch, RE ;
Jin, S ;
Russo, G .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1997, 34 (01) :246-281
[7]  
Degond P, 2004, MODEL SIMUL SCI ENG, P3, DOI 10.1007/978-0-8176-8200-2_1
[8]   ABOUT THE REGULARIZING PROPERTIES OF THE NON-CUT-OFF KAC EQUATION [J].
DESVILLETTES, L .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 168 (02) :417-440
[9]   Solving the Boltzmann equation in N log2 N [J].
Filbet, Francis ;
Mouhot, Clement ;
Pareschi, Lorenzo .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2006, 28 (03) :1029-1053
[10]   Relaxation schemes for nonlinear kinetic equations [J].
Gabetta, E ;
Pareschi, L ;
Toscani, G .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1997, 34 (06) :2168-2194