Mahler measures in a cubic field

被引:3
|
作者
Dubickas, Arturas
机构
[1] Vilnius State Univ, Dept Math & Informat, LT-03225 Vilnius, Lithuania
[2] Inst Math & Informat, LT-08663 Vilnius, Lithuania
关键词
Mahler measure; Pisot numbers; cubic extension;
D O I
10.1007/s10587-006-0069-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that every cyclic cubic extension E of the field of rational numbers contains algebraic numbers which are Mahler measures but not the Mahler measures of algebraic numbers lying in E. This extends the result of Schinzel who proved the same statement for every real quadratic field E. A corresponding conjecture is made for an arbitrary non-totally complex field E and some numerical examples are given. We also show that every natural power of a Mahler measure is a Mahler measure.
引用
收藏
页码:949 / 956
页数:8
相关论文
共 50 条
  • [21] Higher Mahler measures and zeta functions
    Kurokawa, N.
    Lalin, M.
    Ochiai, H.
    ACTA ARITHMETICA, 2008, 135 (03) : 269 - 297
  • [22] Regulator of modular units and Mahler measures
    Zudilin, Wadim
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2014, 156 (02) : 313 - 326
  • [23] LIMITS OF MAHLER MEASURES IN MULTIPLE VARIABLES
    Brunault, Francois
    Guilloux, Antonin
    Mehrabdollahei, Mahya
    Pengo, Riccardo
    ANNALES DE L INSTITUT FOURIER, 2024, 74 (03) : 1407 - 1450
  • [24] TRANSCENDENCE-MEASURES BY A METHOD OF MAHLER
    MILLER, W
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1982, 32 (JAN): : 68 - 78
  • [25] Generalized Mahler measures of Laurent polynomials
    Roy, Subham
    RAMANUJAN JOURNAL, 2024, 64 (03): : 581 - 627
  • [26] Small Mahler Measures From Digraphs
    Coyston, Joshua
    McKee, James
    EXPERIMENTAL MATHEMATICS, 2023, 32 (03) : 527 - 539
  • [27] MAHLER MEASURES OF ELLIPTIC MODULAR SURFACES
    Brunault, Francois
    Neururer, Michael
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 372 (01) : 119 - 152
  • [28] JACKSON q-MAHLER MEASURES
    Hirano, Miki
    Kurokawa, Nobushige
    FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2010, 42 (01) : 51 - 58
  • [29] MEASURES FOR ALGEBRAIC INDEPENDENCE (MAHLER METHOD)
    BECKERLANDECK, PG
    ACTA ARITHMETICA, 1988, 50 (03) : 279 - 293
  • [30] A MODULAR APPROACH TO CUBIC THUE-MAHLER EQUATIONS
    Kim, Dohyeong
    MATHEMATICS OF COMPUTATION, 2017, 86 (305) : 1435 - 1471