The Schrodinger equation and a multidimensional inverse scattering transform

被引:1
作者
Bernstein, S [1 ]
机构
[1] Bauhaus Univ Weimar, Inst Math & Phys, D-99421 Weimar, Germany
关键词
inverse scattering transform; Clifford analysis; Schrodinger-type equation; generalized Cauchy formula;
D O I
10.1002/mma.374
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Schrodinger equation is one of the most important equations in mathematics, physics and also engineering. We outline some connections between transformations of non-linear equations, the Schrodinger equation and the inverse scattering transform. After some remarks on generalizations into higher dimensions we present a multidimensional partial derivative method based on Clifford analysis. To explain the method we consider the formal solution of the inverse scattering problem for the n-dimensional time-dependent Schrodinger equations given by A.I. Nachman and M.J. Ablowitz. Copyright (C) 2002 John Wiley Sons, Ltd.
引用
收藏
页码:1343 / 1353
页数:11
相关论文
共 36 条
[1]  
Ablowitz M. J., 1991, LONDON MATH SOC LECT, V149
[2]  
Ablowitz M.J., 1981, SIAM STUDIES APPL MA, V4
[3]  
ABLOWITZ MJ, 1974, STUD APPL MATH, V53, P249
[4]   NONLINEAR-EVOLUTION EQUATIONS OF PHYSICAL SIGNIFICANCE [J].
ABLOWITZ, MJ ;
KAUP, DJ ;
NEWELL, AC ;
SEGUR, H .
PHYSICAL REVIEW LETTERS, 1973, 31 (02) :125-127
[5]  
[Anonymous], 1999, COMPLEX VARIABLES
[6]   SCATTERING AND INVERSE SCATTERING FOR 1ST ORDER SYSTEMS [J].
BEALS, R ;
COIFMAN, RR .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1984, 37 (01) :39-90
[7]  
Bernstein S, 2000, PROG PHYSIC, V19, P117
[8]  
BERNSTEIN S, 2000, ADV APPL CLIFFORD AL, V11, P21
[9]  
BERNSTEIN S, 1996, P S AN NUM METH QUAT, P207
[10]  
Bernstein S, 2001, THESIS TU BERGAKADEM