SOME REVERSE lp-TYPE INEQUALITIES INVOLVING CERTAIN QUASI MONOTONE SEQUENCES

被引:0
作者
Potapov, Mikhail K. [1 ]
Berisha, Faton M. [2 ]
Berisha, Nimete Sh [3 ]
Kadriu, Reshad [4 ]
机构
[1] Moscow MV Lomonosov State Univ, Dept Mech & Math, Moscow 117234, Russia
[2] Univ Prishtina, Fac Math & Sci, Prishtina 10000, Kosovo, Serbia
[3] Univ Prishtina, Fac Econ, Prishtina, Serbia
[4] Coll Business, Scottsdale, AZ USA
来源
MATHEMATICAL INEQUALITIES & APPLICATIONS | 2015年 / 18卷 / 04期
关键词
l(p)-type; Copson; Leindler; inequalities; quasi; lacunary; geometrically; monotone sequences;
D O I
10.7153/mia-18-96
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we give some l(p)-type inequalities about sequences satisfying certain quasi monotone type properties. As special cases, reverse l(p)-type inequalities for non-negative decreasing sequences are obtained. The inequalities are closely related to Copson's and Leindler's inequalities, but the sign of the inequalities is reversed.
引用
收藏
页码:1245 / 1252
页数:8
相关论文
共 12 条
  • [1] [Anonymous], 1958, MATH SB
  • [2] Copson E.T., 1928, J LOND MATH SOC, V3, P49
  • [3] Gao P., 2013, LP NORMS FACTORABLE
  • [4] Hardy G. H., 1988, CAMBRIDGE MATH LIB
  • [5] LEINDLER L, 1970, ACTA SCI MATH, V31, P279
  • [6] Leindler L., 1966, ACTA SCI MATH, V27, P205
  • [7] LEINDLER L, 2000, J INEQUAL PURE APPL, V1
  • [8] Potapov M. K., 2013, SURV APPROX THEORY, V8, P1
  • [9] Potapov M. K., 1979, PUBL I MATH, V26, P215
  • [10] Potapov MK, 1972, MATHEMATICA, V14, P123