Predicting the output dimensions, porosity and elastic modulus of additive manufactured biomaterial structures targeting orthopedic implants

被引:49
作者
Bartolomeu, F. [1 ]
Fonseca, J. [1 ]
Peixinho, N. [2 ]
Alves, N. [3 ]
Gasik, M. [4 ]
Silva, F. S. [1 ]
Miranda, G. [1 ]
机构
[1] Univ Minho, Ctr MicroElectroMech Syst CMEMS UMinho, Campus Azurem, P-4800058 Guimaraes, Portugal
[2] Univ Minho, Dept Mech Engn, Campus Azurem, Guimaraes, Portugal
[3] Polytech Inst Leiria, Ctr Rapid & Sustainable Prod Dev, Rua Gen Norton Maros,Apartado 4133, P-2411901 Leiria, Portugal
[4] Aalto Univ Fdn, Sch Chem Technol, Dept Mat Sci & Engn, Espoo 00076, Finland
关键词
Selective laser melting; Ti6Al4V; Multi-material; Predictive models; Elastic modulus; FINITE-ELEMENT-ANALYSIS; MECHANICAL-PROPERTIES; POROUS BIOMATERIALS; TRIBOLOGICAL BEHAVIOR; CELLULAR STRUCTURES; TI-6AL-4V ALLOY; PEEK; FATIGUE; DESIGN; STRATEGY;
D O I
10.1016/j.jmbbm.2019.07.023
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
SLM accuracy for fabricating porous materials is a noteworthy hindrance when aiming to obtain biomaterial cellular structures owing precise geometry, porosity, open-cells dimension and mechanical properties as outcomes. This study provides a comprehensive characterization of seventeen biomaterial Ti6Al4V-based structures in which experimental and numerical investigations (compression stress-strain tests) were carried out. Mono-material Ti6Al4V cellular structures and multi-material Ti6Al4V-PEEK cellular structures were designed, produced by SLM and characterized targeting orthopedic implants. In this work, the differences between the CAD design and the as-produced Ti6Al4V-based structures were obtained from image analysis and were used to develop predictive models. The results showed that dimensional deviations inherent to SLM fabrication are systematically found for different dimensional ranges. The present study proposes several mathematical models, having high coefficients of determination, that estimate the real dimensions, porosity and elastic modulus of Ti6Al4V-based cellular structures as function of the CAD model. Moreover, numerical analysis was performed to estimate the octahedral shear strain for correlating with bone mechanostat theory limits. The developed models can help engineers to design and obtain near-net shape SLM biomaterials matching the desired geometry, open-cells dimensions, porosity and elastic modulus. The obtained results show that by using these AM structures design it is possible to fabricate components exhibiting a strain and elastic modulus that complies with that of bone, thus being suitable for orthopedic implants.
引用
收藏
页码:104 / 117
页数:14
相关论文
共 46 条
[1]   High-strength porous biomaterials for bone replacement: A strategy to assess the interplay between cell morphology, mechanical properties, bone ingrowth and manufacturing constraints [J].
Arabnejad, Sajad ;
Johnston, R. Burnett ;
Pura, Jenny Ann ;
Singh, Baljinder ;
Tanzer, Michael ;
Pasini, Damiano .
ACTA BIOMATERIALIA, 2016, 30 :345-356
[2]   The properties of foams and lattices [J].
Ashby, MF .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2006, 364 (1838) :15-30
[3]   Mechanical behavior of porous commercially pure Ti and Ti-TiB composite materials manufactured by selective laser melting [J].
Attar, H. ;
Loeber, L. ;
Funk, A. ;
Calin, M. ;
Zhang, L. C. ;
Prashanth, K. G. ;
Scudino, S. ;
Zhang, Y. S. ;
Eckert, J. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2015, 625 :350-356
[4]   Compensation strategy to reduce geometry and mechanics mismatches in porous biomaterials built with Selective Laser Melting [J].
Bagheri, Zahra S. ;
Melancon, David ;
Liu, Lu ;
Johnston, R. Burnett ;
Pasini, Damiano .
JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS, 2017, 70 :17-27
[5]   Implant surface design for improved implant stability - A study on Ti6Al4V dense and cellular structures produced by Selective Laser Melting [J].
Bartolomeu, F. ;
Costa, M. M. ;
Gomes, J. R. ;
Alves, N. ;
Abreu, C. S. ;
Silva, F. S. ;
Miranda, G. .
TRIBOLOGY INTERNATIONAL, 2019, 129 :272-282
[6]   Multi-material Ti6Al4V & PEEK cellular structures produced by Selective Laser Melting and Hot Pressing: A tribocorrosion study targeting orthopedic applications [J].
Bartolomeu, F. ;
Buciumeanu, M. ;
Costa, M. M. ;
Alves, N. ;
Gasik, M. ;
Silva, F. S. ;
Miranda, G. .
JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS, 2019, 89 :54-64
[7]   316L stainless steel mechanical and tribological behavior-A comparison between selective laser melting, hot pressing and conventional casting [J].
Bartolomeu, F. ;
Buciumeanu, M. ;
Pinto, E. ;
Alves, N. ;
Carvalho, O. ;
Silva, F. S. ;
Miranda, G. .
ADDITIVE MANUFACTURING, 2017, 16 :81-89
[8]   Wear behavior of Ti6Al4V biomedical alloys processed by selective laser melting, hot pressing and conventional casting [J].
Bartolomeu, F. ;
Buciumeanu, M. ;
Pinto, E. ;
Alves, N. ;
Silva, F. S. ;
Carvalho, O. ;
Miranda, G. .
TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2017, 27 (04) :829-838
[9]   Tribological behavior of Ti6Al4V cellular structures produced by Selective Laser Melting [J].
Bartolomeu, F. ;
Sampaio, M. ;
Carvalho, O. ;
Pinto, E. ;
Alves, N. ;
Gomes, J. R. ;
Silva, F. S. ;
Miranda, G. .
JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS, 2017, 69 :128-134
[10]   Predictive models for physical and mechanical properties of Ti6Al4V produced by Selective Laser Melting [J].
Bartolomeu, F. ;
Faria, S. ;
Carvalho, O. ;
Pinto, E. ;
Alves, N. ;
Silva, F. S. ;
Miranda, G. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2016, 663 :181-192