MULTIPLE SOLUTIONS FOR NONHOMOGENEOUS SCHRODINGER-POISSON EQUATIONS WITH SIGN-CHANGING POTENTIAL

被引:0
作者
Wang, Lixia [1 ,2 ]
Ma, Shiwang [3 ,4 ]
Xu, Na [5 ]
机构
[1] Tianjin Univ, Ctr Appl Math, Tianjin 300072, Peoples R China
[2] Tianjin Chengjian Univ, Sch Sci, Tianjin 300384, Peoples R China
[3] Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
[4] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
[5] Tianjin Univ Technol & Educ, Sch Sci, Tianjin 300222, Peoples R China
基金
中国国家自然科学基金;
关键词
Nonhomogeneous; sign -changing potential; Schrodinger-Poisson equations; Eke land's variational principle; Mountain Pass Theorem; KLEIN-GORDON-MAXWELL; POSITIVE SOLUTIONS; CONVEX NONLINEARITIES; SOLITARY WAVES; BOUND-STATES; SYSTEM; EXISTENCE; R-3; CONCAVE;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we study the following nonhomogeneous Schrodinger-Poisson equations {integral-Delta u +lambda V(x)u + K (x)phi u = f (x, u) + g(x), x is an element of R-3, -Delta phi = K(x)u(2,) x is an element of R-3, where lambda > 0 is a parameter. Under some suitable assumptions on V,K,f and g, the existence of multiple solutions is proved by using the Ekeland's variational principle and the Mountain Pass Theorem in critical point theory. In particular, the potential V is allowed to be sign changing.
引用
收藏
页码:555 / 572
页数:18
相关论文
共 38 条
[1]   A nonlinear superposition principle and multibump solutions of periodic Schrodinger equations [J].
Ackermann, N .
JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 234 (02) :277-320
[2]   Multiple bound states for the Schrodinger-Poisson problem [J].
Ambrosetti, Antonio ;
Ruiz, David .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2008, 10 (03) :391-404
[3]  
[Anonymous], 2000, Variational methods
[4]  
[Anonymous], 1997, Minimax theorems
[5]  
[Anonymous], 2004, Abstr Appl Anal, DOI DOI 10.1155/S1085337504310018
[6]   Ground state solutions for the nonlinear Schrodinger-Maxwell equations [J].
Azzollini, A. ;
Pomponio, A. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 345 (01) :90-108
[7]   EXISTENCE AND MULTIPLICITY RESULTS FOR SOME SUPERLINEAR ELLIPTIC PROBLEMS ON R(N) [J].
BARTSCH, T ;
WANG, ZQ .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1995, 20 (9-10) :1725-1741
[8]  
Benci V., 1998, Topol. Methods Nonlinear Anal., V11, P283
[9]   A RELATION BETWEEN POINTWISE CONVERGENCE OF FUNCTIONS AND CONVERGENCE OF FUNCTIONALS [J].
BREZIS, H ;
LIEB, E .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 88 (03) :486-490
[10]   Multiple solutions for nonhomogeneous Schrodinger-Maxwell and Klein- Gordon-Maxwell equations on R 3 [J].
Chen, Shang-Jie ;
Tang, Chun-Lei .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2010, 17 (05) :559-574