Multi-model evaluation of phenology prediction for wheat in Australia

被引:22
作者
Wallach, Daniel [1 ]
Palosuo, Taru [2 ]
Thorburn, Peter [3 ]
Hochman, Zvi [3 ]
Andrianasolo, Fety [4 ]
Asseng, Senthold [5 ]
Basso, Bruno [6 ]
Buis, Samuel [7 ]
Crout, Neil [8 ]
Dumont, Benjamin [9 ,10 ]
Ferrise, Roberto [11 ]
Gaiser, Thomas [12 ]
Gayler, Sebastian [13 ]
Hiremath, Santosh [14 ]
Hoek, Steven [15 ]
Horan, Heidi [3 ]
Hoogenboom, Gerrit [5 ,16 ]
Huang, Mingxia [17 ]
Jabloun, Mohamed [8 ]
Jansson, Per-Erik [18 ]
Jing, Qi [19 ]
Justes, Eric [20 ]
Kersebaum, Kurt Christian [21 ,22 ]
Launay, Marie [23 ]
Lewan, Elisabet [24 ]
Luo, Qunying [25 ]
Maestrini, Bernardo [6 ,15 ]
Moriondo, Marco [26 ]
Olesen, Jorgen Eivind [27 ]
Padovan, Gloria [11 ]
Poyda, Arne [28 ]
Priesack, Eckart [29 ]
Pullens, Johannes Wilhelmus Maria [27 ]
Qian, Budong [19 ]
Schuetze, Niels [30 ]
Shelia, Vakhtang [5 ,16 ]
Souissi, Amir [31 ,32 ]
Specka, Xenia [21 ]
Srivastava, Amit Kumar [12 ]
Stella, Tommaso [21 ]
Streck, Thilo [13 ]
Trombi, Giacomo [11 ]
Wallor, Evelyn [21 ]
Wang, Jing [17 ]
Weber, Tobias Kd [13 ]
Weihermueller, Lutz [33 ]
de Wit, Allard [15 ]
Woehling, Thomas [30 ,34 ]
Xiao, Liujun [5 ,35 ]
Zhao, Chuang [5 ]
机构
[1] INRAE, UMR AGIR, Castanet Tolosan, France
[2] Nat Resources Inst Finland Luke, Helsinki, Finland
[3] CSIRO Agr & Food, Brisbane, Qld, Australia
[4] ARVALIS Inst Vegetal Paris, Paris, France
[5] Univ Florida, Agr & Biol Engn Dept, Gainesville, FL USA
[6] Michigan State Univ, Dept Earth & Environm Sci, E Lansing, MI 48824 USA
[7] INRAE, UMR 1114 EMMAH, Avignon, France
[8] Univ Nottingham, Sch Biosci, Loughborough, Leics, England
[9] Univ Liege, Plant Sci, Gembloux Agrobio Tech, Gembloux, Belgium
[10] Univ Liege, TERRA Teaching & Res Ctr, Gembloux Agrobio Tech, Gembloux, Belgium
[11] Univ Florence, Dept Agr Food Environm & Forestry DAGRI, Florence, Italy
[12] Univ Bonn, Inst Crop Sci & Resource Conservat, Bonn, Germany
[13] Univ Hohenheim, Inst Soil Sci & Land Evaluat, Biogeophys, Stuttgart, Germany
[14] Aalto Univ, Sch Sci, Espoo, Finland
[15] Wageningen Univ & Res, Wageningen, Netherlands
[16] Univ Florida, Inst Sustainable Food Syst, Gainesville, FL USA
[17] China Agr Univ, Coll Resources & Environm Sci, Beijing, Peoples R China
[18] Royal Inst Technol KTH, Stockholm, Sweden
[19] Agr & Agri Food Canada, Ottawa Res & Dev Ctr, Ottawa, ON, Canada
[20] CIRAD, UMR SYST, Montpellier, France
[21] Leibniz Ctr Agr Landscape Res, Muncheberg, Germany
[22] CAS, Global Change Res Inst, Brno, Czech Republic
[23] INRAE, US 1116 AgroClim, Avignon, France
[24] Swedish Univ Agr Sci SLU, Dept Soil & Environm, Uppsala, Sweden
[25] Hillridge Technol Pty Ltd, Sydney, NSW, Australia
[26] CNR IBE, Florence, Italy
[27] Aarhus Univ, Dept Agroecol, Tjele, Denmark
[28] Univ Kiel, Inst Crop Sci & Plant Breeding, Grass & Forage Sci Organ Agr, Kiel, Germany
[29] Helmholtz Zentrum Munchen, Inst Biochem Plant Pathol, German Res Ctr Environm Hlth, Neuherberg, Germany
[30] Tech Unive Dresden, Inst Hydrol & Meteorol, Chair Hydrol, Dresden, Germany
[31] Univ Carthage, Natl Inst Agron Res Tunisia INRAT, Agron Lab, Tunis, Tunisia
[32] Univ Carthage, Natl Agron Inst Tunisia INAT, Tunis, Tunisia
[33] Forschungszentrum Julich, Agrosphere, Inst Bio & Geosci IBG 3, Julich, Germany
[34] Lincoln Agritech Ltd, Hamilton, New Zealand
[35] Nanjing Agr Univ, Natl Engn & Technol Ctr Informat Agr, Jiangsu Collaborat Innovat Ctr Modern Crop Prod, Jiangsu Key Lab Informat Agr, Nanjing, Jiangsu, Peoples R China
基金
芬兰科学院; 美国食品与农业研究所; 美国国家科学基金会;
关键词
Evaluation; Phenology; Wheat; Australia; Structure uncertainty; Parameter uncertainty; CROP MODEL PREDICTIONS; TIME; UNCERTAINTY; SIMULATION; MAIZE; PERFORMANCE; CULTIVARS; MATURITY; SYSTEMS; EUROPE;
D O I
10.1016/j.agrformet.2020.108289
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Predicting wheat phenology is important for cultivar selection, for effective crop management and provides a baseline for evaluating the effects of global change. Evaluating how well crop phenology can be predicted is therefore of major interest. Twenty-eight wheat modeling groups participated in this evaluation. Our target population was wheat fields in the major wheat growing regions of Australia under current climatic conditions and with current local management practices. The environments used for calibration and for evaluation were both sampled from this same target population. The calibration and evaluation environments had neither sites nor years in common, so this is a rigorous evaluation of the ability of modeling groups to predict phenology for new sites and weather conditions. Mean absolute error (MAE) for the evaluation environments, averaged over predictions of three phenological stages and over modeling groups, was 9 days, with a range from 6 to 20 days. Predictions using the multi-modeling group mean and median had prediction errors nearly as small as the best modeling group. About two thirds of the modeling groups performed better than a simple but relevant benchmark, which predicts phenology by assuming a constant temperature sum for each development stage. The added complexity of crop models beyond just the effect of temperature was thus justified in most cases. There was substantial variability between modeling groups using the same model structure, which implies that model improvement could be achieved not only by improving model structure, but also by improving parameter values, and in particular by improving calibration techniques.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Improving WOFOST model to simulate winter wheat phenology in Europe: Evaluation and effects on yield
    Ceglar, A.
    van der Wijngaart, R.
    de Wit, A.
    Lecerf, R.
    Boogaard, H.
    Seguini, L.
    van den Berg, M.
    Toreti, A.
    Zampieri, M.
    Fumagalli, D.
    Baruth, B.
    AGRICULTURAL SYSTEMS, 2019, 168 : 168 - 180
  • [2] Bayesian multi-level calibration of a process-based maize phenology model
    Viswanathan, Michelle
    Scheidegger, Andreas
    Streck, Thilo
    Gayler, Sebastian
    Weber, Tobias K. D.
    ECOLOGICAL MODELLING, 2022, 474
  • [3] Multi-model averaging for continuous streamflow prediction in ungauged basins
    Arsenault, Richard
    Brissette, Francois
    HYDROLOGICAL SCIENCES JOURNAL-JOURNAL DES SCIENCES HYDROLOGIQUES, 2016, 61 (13): : 2443 - 2454
  • [4] Decadal prediction skill in a multi-model ensemble
    van Oldenborgh, Geert Jan
    Doblas-Reyes, Francisco J.
    Wouters, Bert
    Hazeleger, Wilco
    CLIMATE DYNAMICS, 2012, 38 (7-8) : 1263 - 1280
  • [5] Can a multi-model ensemble improve phenology predictions for climate change studies?
    Yun, Kyungdahm
    Hsiao, Jennifer
    Jung, Myung-Pyo
    Choi, In-Tae
    Glenn, D. Michael
    Shim, Kyo-Moon
    Kim, Soo-Hyung
    ECOLOGICAL MODELLING, 2017, 362 : 54 - 64
  • [6] Sweat loss prediction using a multi-model approach
    Xu, Xiaojiang
    Santee, William R.
    INTERNATIONAL JOURNAL OF BIOMETEOROLOGY, 2011, 55 (04) : 501 - 508
  • [7] Prediction and parameter uncertainty for winter wheat phenology models depend on model and parameterization method differences
    Kawakita, Satoshi
    Takahashi, Hidehiro
    Moriya, Kazuyuki
    AGRICULTURAL AND FOREST METEOROLOGY, 2020, 290
  • [8] The chaos in calibrating crop models: Lessons learned from a multi-model calibration exercise
    Wallach, Daniel
    Palosuo, Taru
    Thorburn, Peter
    Hochman, Zvi
    Gourdain, Emmanuelle
    Andrianasolo, Fety
    Asseng, Senthold
    Basso, Bruno
    Buis, Samuel
    Crout, Neil
    Dibari, Camilla
    Dumont, Benjamin
    Ferrise, Roberto
    Gaiser, Thomas
    Garcia, Cecile
    Gayler, Sebastian
    Ghahramani, Afshin
    Hiremath, Santosh
    Hoek, Steven
    Horan, Heidi
    Hoogenboom, Gerrit
    Huang, Mingxia
    Jabloun, Mohamed
    Jansson, Per-Erik
    Jing, Qi
    Justes, Eric
    Kersebaum, Kurt Christian
    Klosterhalfen, Anne
    Launay, Marie
    Lewan, Elisabet
    Luo, Qunying
    Maestrini, Bernardo
    Mielenz, Henrike
    Moriondo, Marco
    Zadeh, Hasti Nariman
    Padovan, Gloria
    Olesen, Jorgen Eivind
    Poyda, Arne
    Priesack, Eckart
    Pullens, Johannes Wilhelmus Maria
    Qian, Budong
    Schuetze, Niels
    Shelia, Vakhtang
    Souissi, Amir
    Specka, Xenia
    Srivastava, Amit Kumar
    Stella, Tommaso
    Streck, Thilo
    Trombi, Giacomo
    Wallor, Evelyn
    ENVIRONMENTAL MODELLING & SOFTWARE, 2021, 145
  • [9] Classifying multi-model wheat yield impact response surfaces showing sensitivity to temperature and precipitation change
    Fronzek, Stefan
    Pirttioja, Nina
    Carter, Timothy R.
    Bindi, Marco
    Hoffmann, Holger
    Palosuo, Taru
    Ruiz-Ramos, Margarita
    Tao, Fulu
    Trnka, Miroslav
    Acutis, Marco
    Asseng, Senthold
    Baranowski, Piotr
    Basso, Bruno
    Bodin, Per
    Buis, Samuel
    Cammarano, Davide
    Deligios, Paola
    Destain, Marie-France
    Dumont, Benjamin
    Ewert, Frank
    Ferrise, Roberto
    Francois, Louis
    Gaiser, Thomas
    Hlavinka, Petr
    Jacquemin, Ingrid
    Kersebaum, Kurt Christian
    Kollas, Chris
    Krzyszczak, Jaromir
    Lorite, Ignacio J.
    Minet, Julien
    Ines Minguez, M.
    Montesino, Manuel
    Moriondo, Marco
    Mueller, Christoph
    Nendel, Claas
    Ozturk, Isik
    Perego, Alessia
    Rodriguez, Alfredo
    Ruane, Alex C.
    Ruget, Francoise
    Sanna, Mattia
    Semenov, Mikhail A.
    Slawinski, Cezary
    Stratonovitch, Pierre
    Supit, Iwan
    Waha, Katharina
    Wang, Enli
    Wu, Lianhai
    Zhao, Zhigan
    Rotter, Reimund P.
    AGRICULTURAL SYSTEMS, 2018, 159 : 209 - 224
  • [10] Vulnerability Assessment of Wheat Yield Under Warming Climate in Northern India Using Multi-model Projections
    Patel, Shubhi
    Mall, R. K.
    Jaiswal, Rohit
    Singh, Rakesh
    Chand, Ramesh
    INTERNATIONAL JOURNAL OF PLANT PRODUCTION, 2022, 16 (04) : 611 - 626