The Diophantine equation x2 - (t2 + t)y2 - (4t+2)x + (4t2+4t)y=0

被引:0
|
作者
Tekcan, Ahmet [1 ]
Ozkoc, Arzu [1 ]
机构
[1] Uludag Univ, Dept Math, Fac Sci, Gorukle, Bursa, Turkey
来源
REVISTA MATEMATICA COMPLUTENSE | 2010年 / 23卷 / 01期
关键词
Diophantine equation; Pell equation;
D O I
10.1007/s13163-009-0009-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let t >= 1 be an integer. In this work, we consider the number of integer solutions of Diophantine equation x(2) - (t(2) + t)y(2) - (4t + 2)x + (4t(2) + 4t)y = 0 over Z and also over finite fields F-p for primes p >= 5.
引用
收藏
页码:251 / 260
页数:10
相关论文
共 50 条
  • [21] The al-husayn equation x 4 + y 2 = z 2
    Kozhegel'dinov, S. Sh.
    MATHEMATICAL NOTES, 2011, 89 (3-4) : 349 - 360
  • [22] Infinitely many positive solutions of the diophantine equation x2-kxy+y2+x=0
    Marlewski, A
    Zarzycki, P
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2004, 47 (01) : 115 - 121
  • [23] Solutions to the Diophantine Equation x2
    Yow, Kai Siong
    Sapar, Siti Hasana
    Low, Cheng Yaw
    MALAYSIAN JOURNAL OF FUNDAMENTAL AND APPLIED SCIENCES, 2022, 18 (04): : 489 - 496
  • [24] A note on a theorem of Ljunggren and the Diophantine equations x2-kxy2+y4=1,4
    Walsh, G
    ARCHIV DER MATHEMATIK, 1999, 73 (02) : 119 - 125
  • [25] UPPER BOUNDS FOR THE NUMBER OF SOLUTIONS FOR THE DIOPHANTINE EQUATION y2 = px(Ax2 - C) (C=2, ±1, ±4)
    Bencherif, Farid
    Boumahdi, Rachid
    Garici, Tarek
    Schedler, Zak
    COLLOQUIUM MATHEMATICUM, 2020, 159 (02) : 243 - 257
  • [26] The equation y2 = x6 + x2+1 revisited
    Tho, Nguyen Xuan
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2023, 54 (03) : 760 - 765
  • [27] On Diophantine equation 3a2x4 − By2 = 1
    Debiao He
    Jianhua Chen
    Yu Wang
    Annali di Matematica Pura ed Applicata, 2010, 189 : 679 - 687
  • [28] On primitive solutions of the Diophantine equation x y M 2+=2
    Busenhart, Chris
    Halbeisen, Lorenz
    Hungerbuehler, Norbert
    Riesen, Oliver
    OPEN MATHEMATICS, 2021, 19 (01): : 863 - 868
  • [29] On Diophantine equation 3a2x4 - By2=1
    He, Debiao
    Chen, Jianhua
    Wang, Yu
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2010, 189 (04) : 679 - 687
  • [30] Variants of the Diophantine equation n!+1=y2
    Kihel, Omar
    Luca, Florian
    Togbe, Alain
    PORTUGALIAE MATHEMATICA, 2010, 67 (01) : 1 - 11