The Diophantine equation x2 - (t2 + t)y2 - (4t+2)x + (4t2+4t)y=0

被引:0
|
作者
Tekcan, Ahmet [1 ]
Ozkoc, Arzu [1 ]
机构
[1] Uludag Univ, Dept Math, Fac Sci, Gorukle, Bursa, Turkey
来源
REVISTA MATEMATICA COMPLUTENSE | 2010年 / 23卷 / 01期
关键词
Diophantine equation; Pell equation;
D O I
10.1007/s13163-009-0009-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let t >= 1 be an integer. In this work, we consider the number of integer solutions of Diophantine equation x(2) - (t(2) + t)y(2) - (4t + 2)x + (4t(2) + 4t)y = 0 over Z and also over finite fields F-p for primes p >= 5.
引用
收藏
页码:251 / 260
页数:10
相关论文
共 50 条
  • [1] The Diophantine equation x2−(t2+t)y2−(4t+2)x+(4t2+4t)y=0
    Ahmet Tekcan
    Arzu Özkoç
    Revista Matemática Complutense, 2010, 23 : 251 - 260
  • [2] Quadratic Diophantine Equation x2 - (t2 - t)y2 - (4t-2)x + (4t2-4t)y=0
    Ozkoc, Arzu
    Tekcan, Ahmet
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2010, 33 (02) : 273 - 280
  • [3] On the Diophantine equation x2 − kxy + y2 − 2n = 0
    Refik Keskin
    Zafer Şiar
    Olcay Karaatli
    Czechoslovak Mathematical Journal, 2013, 63 : 783 - 797
  • [4] On the Diophantine equation x2 - kxy plus y2-2n=0
    Keskin, Refik
    Siar, Zafer
    Karaatli, Olcay
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2013, 63 (03) : 783 - 797
  • [5] A Note on the Diophantine Equation x2 + y6 = ze, e ≥ 4
    Zelator, Konstantine
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2012, 55 (02): : 435 - 440
  • [6] On the equation Resx(P(x), x2 + sx plus t) = a
    Alkabouss, Sakha A.
    Garici, Tarek
    Larone, Jesse
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2018, 14 (04) : 1073 - 1079
  • [7] A note on a theorem of Ljunggren and the Diophantine equations x2–kxy2 + y4 = 1, 4
    Gary Walsh
    Archiv der Mathematik, 1999, 73 : 119 - 125
  • [8] On the diophantine equation y2 = Πi≤8(x + ki)
    Srikanth, R.
    Subburam, S.
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2018, 128 (04):
  • [9] The Diophantine equation x4+2y4 = z4+4w4
    Elsenhans, AS
    Jahnel, J
    MATHEMATICS OF COMPUTATION, 2006, 75 (254) : 935 - 940
  • [10] The al-husayn equation x4 + y2 = z2
    S. Sh. Kozhegel’dinov
    Mathematical Notes, 2011, 89 : 349 - 360