microRNA-186 alleviates oxygen-glucose deprivation/reoxygenation-induced injury by directly targeting hypoxia-inducible factor-1α

被引:10
|
作者
Li, Shengnan [1 ,2 ]
Wang, Yajun [3 ]
Wang, Mengxu [1 ,4 ]
Chen, Linfa [1 ,4 ]
Chen, Shaofeng [1 ,4 ]
Deng, Fu [1 ,4 ]
Zhu, Peiyi [1 ,4 ]
Hu, Weidong [1 ,4 ]
Chen, Xinglan [1 ,4 ]
Zhao, Bin [1 ,2 ]
Ma, Guoda [1 ,3 ]
Li, You [1 ,2 ]
机构
[1] Guangdong Med Univ, Guangdong Key Lab Age Related Cardiac & Cerebral, Affiliated Hosp, Zhanjiang 524001, Peoples R China
[2] Guangdong Med Univ, Inst Neurol, Affiliated Hosp, Zhanjiang, Peoples R China
[3] Guangdong Med Univ, Shunde Maternal & Childrens Hosp, Maternal & Childrens Hlth Res Inst, Shunde, Peoples R China
[4] Guangdong Med Univ, Dept Neurol, Affiliated Hosp, Zhanjiang, Peoples R China
关键词
apoptosis; HIF‐ 1α ischemic; reperfusion injury; miR‐ 186; OGD; R;
D O I
10.1002/jbt.22752
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Previous studies have suggested that microRNA-186 (miR-186) can be induced under hypoxic conditions, and is associated with apoptosis. This study was undertaken to explore the exact role of this microRNA (miRNA) in the apoptotic death of neurons during cerebral ischemic/reperfusion (I/R) injury. To model cerebral ischemia/reperfusion (I/R) injuries, we utilized a transient middle cerebral artery occlusion approach in rats, as well as a model of oxygen-glucose deprivation/reoxygenation (OGD/R) in Neuro2a cells. We found that in both in vitro and in vivo models of cerebral I/R injuries, levels of miR-186 were markedly decreased. When we overexpressed miR-186, this was associated with a reduction in the apoptotic death of neuroblastoma cells in the OGD/R model system, whereas the opposite was true when this miRNA was instead inhibited. We further found miR-186 to directly target hypoxia-inducible factor 1 alpha (HIF-1 alpha) by interacting with the 3 '-untranslated region of this mRNA. When we knocked down HIF-1 alpha, this partially overcame the apoptotic death of cells in response to OGD/R injury and associated miR-186 downregulation. Our findings indicate that miR-186 is able to reduce ischemic injury to neurons at least in part through downregulating HIF-1 alpha, suggesting that the miR-186/HIF-1 alpha axis is a potential therapeutic target for the treatment of ischemic stroke.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 50 条
  • [31] MicroRNA-33b Inhibits the Proliferation and Migration of Osteosarcoma Cells via Targeting Hypoxia-Inducible Factor-1α
    Zhou, Yong
    Yang, Chuandong
    Wang, Kunpeng
    Liu, Xuefeng
    Liu, Quan
    ONCOLOGY RESEARCH, 2017, 25 (03) : 397 - 405
  • [32] MicroRNA miR-505-5p Promotes Oxygen-Glucose Deprivation/Reoxygenation-Induced Neuronal Injury via Negative Regulation of CREG1 in Cultured Neuron-Like Cells
    Gao, Y.
    Nan, G.
    Chi, L.
    NEUROPHYSIOLOGY, 2019, 51 (06) : 400 - 408
  • [33] MLIF Alleviates SH-SY5Y Neuroblastoma Injury Induced by Oxygen-Glucose Deprivation by Targeting Eukaryotic Translation Elongation Factor 1A2
    Zhu, Qiuzhen
    Zhang, Yuefan
    Liu, Yulan
    Cheng, Hao
    Wang, Jing
    Zhang, Yue
    Rui, Yaocheng
    Li, Tiejun
    PLOS ONE, 2016, 11 (02):
  • [34] Ginsenosides Rb1 and Rg1 Protect Primary Cultured Astrocytes against Oxygen-Glucose Deprivation/Reoxygenation-Induced Injury via Improving Mitochondrial Function
    Xu, Meng
    Ma, Qing
    Fan, Chunlan
    Chen, Xue
    Zhang, Huiming
    Tang, Minke
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019, 20 (23)
  • [35] Baicalin alleviates oxygen-glucose deprivation/reoxygenation-induced SK-N-SH cell injury via the regulation of miR-556-3p/ACSL4 pathway
    Dai, Weiwei
    Yue, Chunjing
    Zhang, Xiancai
    Jia, Yalian
    Han, Zongqi
    Du, Jingxia
    Song, Xiaohua
    CHEMICAL BIOLOGY & DRUG DESIGN, 2024, 103 (02)
  • [36] Activation of SphK1 by K6PC-5 Inhibits Oxygen-Glucose Deprivation/Reoxygenation-Induced Myocardial Cell Death
    Shao, Jun-jie
    Peng, Yi
    Wang, Li-ming
    Wang, Jian-kai
    Chen, Xin
    DNA AND CELL BIOLOGY, 2015, 34 (11) : 669 - 676
  • [37] Hypoxia-Induced Autophagy Enhances Cisplatin Resistance in Human Bladder Cancer Cells by Targeting Hypoxia-Inducible Factor-1α
    Mao, Xiawa
    Nanzhang
    Xiao, Jiaquao
    Wu, Huifeng
    Ding, Kefeng
    JOURNAL OF IMMUNOLOGY RESEARCH, 2021, 2021
  • [38] Knockdown of IL-32 protects PC12 cells against oxygen-glucose deprivation/reoxygenation-induced injury via activation of Nrf2/NF-κB pathway
    Yin, Hua
    Wu, Meiyu
    Jia, Yue
    METABOLIC BRAIN DISEASE, 2020, 35 (02) : 363 - 371
  • [39] Sirtuin7 is involved in protecting neurons against oxygen-glucose deprivation and reoxygenation-induced injury through regulation of the p53 signaling pathway
    Lv, Jianrui
    Tian, Junbin
    Zheng, Guoxi
    Zhao, Jing
    JOURNAL OF BIOCHEMICAL AND MOLECULAR TOXICOLOGY, 2017, 31 (10)
  • [40] Curcumin Protects Neurons Against Oxygen-Glucose Deprivation/Reoxygenation-Induced Injury Through Activation of Peroxisome Proliferator-Activated Receptor-c Function
    Liu, Zun-Jing
    Liu, Hong-Qiang
    Xiao, Cheng
    Fan, Hui-Zhen
    Huang, Qing
    Liu, Yun-Hai
    Wang, Yu
    JOURNAL OF NEUROSCIENCE RESEARCH, 2014, 92 (11) : 1549 - 1559