microRNA-186 alleviates oxygen-glucose deprivation/reoxygenation-induced injury by directly targeting hypoxia-inducible factor-1α

被引:10
|
作者
Li, Shengnan [1 ,2 ]
Wang, Yajun [3 ]
Wang, Mengxu [1 ,4 ]
Chen, Linfa [1 ,4 ]
Chen, Shaofeng [1 ,4 ]
Deng, Fu [1 ,4 ]
Zhu, Peiyi [1 ,4 ]
Hu, Weidong [1 ,4 ]
Chen, Xinglan [1 ,4 ]
Zhao, Bin [1 ,2 ]
Ma, Guoda [1 ,3 ]
Li, You [1 ,2 ]
机构
[1] Guangdong Med Univ, Guangdong Key Lab Age Related Cardiac & Cerebral, Affiliated Hosp, Zhanjiang 524001, Peoples R China
[2] Guangdong Med Univ, Inst Neurol, Affiliated Hosp, Zhanjiang, Peoples R China
[3] Guangdong Med Univ, Shunde Maternal & Childrens Hosp, Maternal & Childrens Hlth Res Inst, Shunde, Peoples R China
[4] Guangdong Med Univ, Dept Neurol, Affiliated Hosp, Zhanjiang, Peoples R China
关键词
apoptosis; HIF‐ 1α ischemic; reperfusion injury; miR‐ 186; OGD; R;
D O I
10.1002/jbt.22752
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Previous studies have suggested that microRNA-186 (miR-186) can be induced under hypoxic conditions, and is associated with apoptosis. This study was undertaken to explore the exact role of this microRNA (miRNA) in the apoptotic death of neurons during cerebral ischemic/reperfusion (I/R) injury. To model cerebral ischemia/reperfusion (I/R) injuries, we utilized a transient middle cerebral artery occlusion approach in rats, as well as a model of oxygen-glucose deprivation/reoxygenation (OGD/R) in Neuro2a cells. We found that in both in vitro and in vivo models of cerebral I/R injuries, levels of miR-186 were markedly decreased. When we overexpressed miR-186, this was associated with a reduction in the apoptotic death of neuroblastoma cells in the OGD/R model system, whereas the opposite was true when this miRNA was instead inhibited. We further found miR-186 to directly target hypoxia-inducible factor 1 alpha (HIF-1 alpha) by interacting with the 3 '-untranslated region of this mRNA. When we knocked down HIF-1 alpha, this partially overcame the apoptotic death of cells in response to OGD/R injury and associated miR-186 downregulation. Our findings indicate that miR-186 is able to reduce ischemic injury to neurons at least in part through downregulating HIF-1 alpha, suggesting that the miR-186/HIF-1 alpha axis is a potential therapeutic target for the treatment of ischemic stroke.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 50 条
  • [11] Petatewalide B alleviates oxygen-glucose deprivation/reoxygenation-induced neuronal injury via activation of the AMPK/Nrf2 signaling pathway
    Park, Sun Young
    Cho, Min Hyun
    Li, Mei
    Li, Ke
    Park, Geuntae
    Choi, Young-Whan
    MOLECULAR MEDICINE REPORTS, 2020, 22 (01) : 239 - 246
  • [12] Zhongfenggao Protects Brain Microvascular Endothelial Cells from Oxygen-Glucose Deprivation/Reoxygenation-Induced Injury by Angiogenesis
    Huang, Shenghui
    Gong, Ting
    Zhang, Tengfei
    Wang, Xinfeng
    Cheng, Qianqian
    Li, Yanyi
    BIOLOGICAL & PHARMACEUTICAL BULLETIN, 2019, 42 (02) : 222 - 230
  • [13] Exosomes derived from mesenchyml stem cells ameliorate oxygen-glucose deprivation/reoxygenation-induced neuronal injury via transferring MicroRNA-194 and targeting Bach1
    Li, Xu
    Zhang, Xin
    Liu, Yajun
    Pan, Ruihan
    Liang, Xiaolong
    Huang, Lifa
    Yang, Chao
    TISSUE & CELL, 2021, 73
  • [14] ATPIF1 alleviates oxygen glucose deprivation/reoxygenation-induced astrocyte injury in vitro: A rat model of ischemic brain injury
    Wei, Zhijie
    Wu, Rui
    Zhang, Li
    Xu, Ping
    ADVANCES IN CLINICAL AND EXPERIMENTAL MEDICINE, 2023, 32 (07): : 791 - 802
  • [15] Effect of hypoxia-inducible factor 1-alpha on hypoxia/reoxygenation-induced apoptosis in primary neonatal rat cardiomyocytes
    Wang, Xiaoou
    Ma, Shuai
    Qi, Guoxian
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2012, 417 (04) : 1227 - 1234
  • [16] Troxerutin and Cerebroprotein Hydrolysate Injection Protects Neurovascular Units from Oxygen-Glucose Deprivation and Reoxygenation-Induced Injury In Vitro
    Zhao, Hongyi
    Liu, Yu
    Zeng, Jing
    Li, Dandan
    Zhang, Weiwei
    Huang, Yonghua
    EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE, 2018, 2018
  • [17] Inhibition of microRNA-429 attenuates oxygen-glucose deprivation/reoxygenation-induced neuronal injury by promoting expression of GATA-binding protein 4
    Xiao, Jie
    Kong, Ranran
    Hu, Jingye
    NEUROREPORT, 2018, 29 (09) : 723 - 730
  • [18] DIXDC1 prevents oxygen-glucose deprivation/reoxygenation-induced injury in hippocampal neurons in vitro by promoting Wnt/β-catenin signaling
    Li, T.
    Wan, Y-C
    Sun, L-J
    Tao, S-J
    Chen, P.
    Liu, C-H
    Wang, K.
    Zhou, C-Y
    Zhao, G-Q
    EUROPEAN REVIEW FOR MEDICAL AND PHARMACOLOGICAL SCIENCES, 2018, 22 (17) : 5678 - 5687
  • [19] miR-363-3p attenuates the oxygen-glucose deprivation/reoxygenation-induced neuronal injury in vitro by targeting PDCD6IP
    Wang, Yihan
    Jin, Jiahui
    Xia, Zongxin
    Chen, Huisheng
    MOLECULAR MEDICINE REPORTS, 2022, 26 (05)
  • [20] Circ_TLK1 knockdown alleviates oxygen-glucose deprivation/reoxygenation-induced PC12 cell injury by regulating microRNA-136-5p/follistatin like-1 axis
    Zhang, Zhenduo
    He, Jinbo
    Wang, Baoliang
    EUROPEAN JOURNAL OF NEUROSCIENCE, 2022, 56 (04) : 4304 - 4316