Molecular basis of endothelial cell morphogenesis in three-dimensional extracellular matrices

被引:184
作者
Davis, GE [1 ]
Bayless, KJ [1 ]
Mavila, A [1 ]
机构
[1] Texas A&M Univ, Hlth Sci Ctr, Dept Pathol, College Stn, TX 77843 USA
来源
ANATOMICAL RECORD | 2002年 / 268卷 / 03期
关键词
endothelial cell morphogenesis; extracellular matrix; integrins; Rho GTPases; vacuoles and lumens; differential gene expression; matrix metalloproteinases; plasmin; endothelial cell tube regression;
D O I
10.1002/ar.10159
中图分类号
R602 [外科病理学、解剖学]; R32 [人体形态学];
学科分类号
100101 ;
摘要
Although many studies have focused on blood vessel development and new blood vessel formation associated with disease processes, the question of how endothelial cells (ECs) assemble into tubes in three dimensions (i.e., EC morphogenesis) remains unanswered. EC morphogenesis is particularly dependent on a signaling axis involving the extracellular matrix (ECM), integrins, and the cytoskeleton, which regulates EC shape changes and signals the pathways necessary for tube formation. Recent studies reveal that genes regulating this matrix-integrin-cytoskeletal (MIC) signaling axis are differentially expressed during EC morphogenesis. The Rho GTPases represent an important class of molecules involved in these events. Cdc42 and Rac1 are required for the process of EC intracellular vacuole formation and coalescence that regulates EC lumen formation in three-dimensional (3D) extracellular matrices, while RhoA appears to stabilize capillary tube networks. Once EC tube networks are established, supporting cells, such as pericytes, are recruited to further stabilize these networks, perhaps by regulating EC basement membrane matrix assembly. Furthermore, we consider recent work showing that EC morphogenesis is balanced by a tendency for newly formed tubes to regress. This morphogenesis-regression balance is controlled by differential gene expression of such molecules as VEGF, angiopoietin-2, and PAI-1, as well as a plasmin- and matrix metalloproteinase-dependent mechanism that induces tube regression through degradation of ECM scaffolds that support EC-lined tubes. It is our hope that this review will stimulate increased interest and effort focused on the basic mechanisms regulating capillary tube formation and regression in 3D extracellular matrices.
引用
收藏
页码:252 / 275
页数:24
相关论文
共 249 条
[21]   Induction and regulation of epithelial-mesenchymal transitions [J].
Boyer, B ;
Vallés, AM ;
Edme, N .
BIOCHEMICAL PHARMACOLOGY, 2000, 60 (08) :1091-1099
[22]   Identification of the cellular receptor for anthrax toxin [J].
Bradley, KA ;
Mogridge, J ;
Mourez, M ;
Collier, RJ ;
Young, JAT .
NATURE, 2001, 414 (6860) :225-229
[23]   REQUIREMENT OF VASCULAR INTEGRIN ALPHA(V)BETA(3) FOR ANGIOGENESIS [J].
BROOKS, PC ;
CLARK, RAF ;
CHERESH, DA .
SCIENCE, 1994, 264 (5158) :569-571
[24]   The hemostatic system as a regulator of angiogenesis [J].
Browder, T ;
Folkman, J ;
Pirie-Shepherd, S .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (03) :1521-1524
[25]   Exploring the new world of the genome with DNA microarrays [J].
Brown, PO ;
Botstein, D .
NATURE GENETICS, 1999, 21 (Suppl 1) :33-37
[26]   Cystic canal mutants in Caenorhabditis elegans are defective in the apical membrane domain of the renal (excretory) cell [J].
Buechner, M ;
Hall, DH ;
Bhatt, H ;
Hedgecock, EM .
DEVELOPMENTAL BIOLOGY, 1999, 214 (01) :227-241
[27]   Phagocytosis and macropinocytosis in Dictyostelium:: Phosphoinositide-based processes, biochemically distinct [J].
Cardelli, J .
TRAFFIC, 2001, 2 (05) :311-320
[28]   Direct cell adhesion to the angiopoietins mediated by integrins [J].
Carlson, TR ;
Feng, YZ ;
Maisonpierre, PC ;
Mrksich, M ;
Morla, AO .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (28) :26516-26525
[29]  
Carmeliet P, 2001, THROMB HAEMOSTASIS, V86, P289
[30]   Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions [J].
Carmeliet, P ;
Moons, L ;
Luttun, A ;
Vincenti, V ;
Compernolle, V ;
De Mol, M ;
Wu, Y ;
Bon, F ;
Devy, L ;
Beck, H ;
Scholz, D ;
Acker, T ;
DiPalma, T ;
Dewerchin, M ;
Noel, A ;
Stalmans, I ;
Barra, A ;
Blacher, S ;
Vandendriessche, T ;
Ponten, A ;
Eriksson, U ;
Plate, KH ;
Foidart, JM ;
Schaper, W ;
Charnock-Jones, DS ;
Hicklin, DJ ;
Herbert, JM ;
Collen, D ;
Persico, MG .
NATURE MEDICINE, 2001, 7 (05) :575-583