Monogenesis of the rings of integers in certain imaginary abelian fields

被引:6
作者
Shah, SIA
Nakahara, T
机构
[1] Saga Univ, Grad Sch, Course Sci & Engn, Dept Engn Syst & Technol, Saga 8408502, Japan
[2] Saga Univ, Fac Sci & Engn, Dept Math, Saga 8408502, Japan
关键词
D O I
10.1017/S0027763000008369
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we consider a subfield K in a cyclotomic field k(m), of conductor m such that [k(m) : K] = 2 in the cases of m = lp(n) with a prime p, where l = 4 or p > l = 3. Then the theme is to know whether the ring of integers in K has a power basis or does not.
引用
收藏
页码:85 / 92
页数:8
相关论文
共 11 条
[1]  
DUMMIT DS, 1977, INDICES CYCLIC CUBIC, P29
[2]   Computing all power integral bases in orders of totally real cyclic sextic number fields [J].
Gaal, I .
MATHEMATICS OF COMPUTATION, 1996, 65 (214) :801-822
[3]   NON-MONOGENICITY OF THE INTEGER RINGS OF CYCLIC Q EXTENSIONS OF PRIME DEGREE L GREATER-THAN-OR-EQUAL-TO 5 [J].
GRAS, MN .
JOURNAL OF NUMBER THEORY, 1986, 23 (03) :347-353
[4]   INTEGRAL BASES FOR QUARTIC FIELDS WITH QUADRATIC SUBFIELDS [J].
HUARD, JG ;
SPEARMAN, BK ;
WILLIAMS, KS .
JOURNAL OF NUMBER THEORY, 1995, 51 (01) :87-102
[5]  
Liang J.J., 1976, J REINE ANGEW MATH, V286, P223
[6]   ON CYCLIC BIQUADRATIC FIELDS RELATED TO A PROBLEM OF HASSE [J].
NAKAHARA, T .
MONATSHEFTE FUR MATHEMATIK, 1982, 94 (02) :125-132
[7]  
NAKAHARA T, 1993, P 3 C CAN NUMB THEOR, P167
[8]  
Narkiewicz W., 1990, Elementary and analytic theory of algebraic numbers, Vsecond
[9]  
SHAH SIA, 2000, P JANGJ MATH SOC PUS, V1, P75
[10]   EXISTENCE OF MONOGENIC CUBIC CYCLIC EXTENSIONS WITH GIVEN DISCRIMINANTS [J].
THEROND, JD .
ARCHIV DER MATHEMATIK, 1983, 41 (03) :243-255