Temporal cavity solitons in a laser-based microcomb: a path to a self-starting pulsed laser without saturable absorption

被引:11
作者
Cutrona, Antonio [1 ]
Hanzard, Pierre-Henry [1 ]
Rowley, Maxwell [1 ]
Totero-Gongora, Juan Sebastian [1 ]
Peccianti, Marco [1 ]
Malomed, Boris A. [2 ,3 ,4 ]
Oppo, Gian-Luca [5 ]
Pasquazi, Alessia [1 ]
机构
[1] Univ Sussex, Dept Phys & Astron, Emergent Photon Lab Epic, Brighton BN1 9QH, E Sussex, England
[2] Tel Aviv Univ, Sch Elect Engn, Dept Phys Elect, Fac Engn, POB 39040, Tel Aviv, Israel
[3] Tel Aviv Univ, Ctr Light Matter Interact, POB 39040, Tel Aviv, Israel
[4] Univ Tarapaca, Inst Alta Invest, Casilla 7D, Arica, Chile
[5] Univ Strathclyde, Dept Phys, SUPA, Glasgow, Lanark, Scotland
基金
英国工程与自然科学研究理事会; 欧洲研究理事会;
关键词
FREQUENCY COMBS; DISSIPATIVE SOLITONS; STABILIZATION; WAVES;
D O I
10.1364/OE.418283
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We theoretically present a design of self-starting operation of microcombs based on laser-cavity solitons in a system composed of a micro-resonator nested in and coupled to an amplifying laser cavity. We demonstrate that it is possible to engineer the modulational-instability gain of the system's zero state to allow the start-up with a well-defined number of robust solitons. The approach can be implemented by using the system parameters, such as the cavity length mismatch and the gain shape, to control the number and repetition rate of the generated solitons. Because the setting does not require saturation of the gain, the results offer an alternative to standard techniques that provide laser mode-locking. Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License.
引用
收藏
页码:6629 / 6646
页数:18
相关论文
共 70 条
[1]   Fundamentals and Applications of Spatial Dissipative Solitons in Photonic Devices [J].
Ackemann, Thorsten ;
Firth, William J. ;
Oppo, Gian-Luca .
ADVANCES IN ATOMIC, MOLECULAR, AND OPTICAL PHYSICS, VOL 57, 2009, 57 :323-421
[2]   Actively coupled optical waveguides [J].
Alexeeva, N. V. ;
Barashenkov, I. V. ;
Rayanov, K. ;
Flach, S. .
PHYSICAL REVIEW A, 2014, 89 (01)
[3]   Pattern formation and competition in nonlinear optics [J].
Arecchi, FT ;
Boccaletti, S ;
Ramazza, P .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1999, 318 (1-2) :1-83
[4]   Bound states of solitary pulses in linearly coupled Ginzburg-Landau equations [J].
Atai, J ;
Malomed, BA .
PHYSICS LETTERS A, 1998, 244 (06) :551-556
[5]   Stability and interactions of solitons in two-component active systems [J].
Atai, J ;
Malomed, BA .
PHYSICAL REVIEW E, 1996, 54 (04) :4371-4374
[6]   Turing patterns in a fiber laser with a nested microresonator: Robust and controllable microcomb generation [J].
Bao, Hualong ;
Olivieri, Luana ;
Rowley, Maxwell ;
Chu, Sai T. ;
Little, Brent E. ;
Morandotti, Roberto ;
Moss, David J. ;
Gongora, Juan Sebastian Totero ;
Peccianti, Marco ;
Pasquazi, Alessia .
PHYSICAL REVIEW RESEARCH, 2020, 2 (02)
[7]   Laser cavity-soliton microcombs [J].
Bao, Hualong ;
Cooper, Andrew ;
Rowley, Maxwell ;
Di Lauro, Luigi ;
Gongora, Juan Sebastian Totero ;
Chu, Sai T. ;
Little, Brent E. ;
Oppo, Gian-Luca ;
Morandotti, Roberto ;
Moss, David J. ;
Wetzel, Benjamin ;
Peccianti, Marco ;
Pasquazi, Alessia .
NATURE PHOTONICS, 2019, 13 (06) :384-+
[8]   Temporal localized structures in optical resonators [J].
Barland, S. ;
Coen, S. ;
Erkintalo, M. ;
Giudici, M. ;
Javaloyes, J. ;
Murdoch, S. .
ADVANCES IN PHYSICS-X, 2017, 2 (03) :496-517
[9]   Cavity solitons as pixels in semiconductor microcavities [J].
Barland, S ;
Tredicce, JR ;
Brambilla, M ;
Lugiato, LA ;
Balle, S ;
Giudici, M ;
Maggipinto, T ;
Spinelli, L ;
Tissoni, G ;
Knödl, T ;
Miller, M ;
Jäger, R .
NATURE, 2002, 419 (6908) :699-702
[10]   Photonic chip-based optical frequency comb using soliton Cherenkov radiation [J].
Brasch, V. ;
Geiselmann, M. ;
Herr, T. ;
Lihachev, G. ;
Pfeiffer, M. H. P. ;
Gorodetsky, M. L. ;
Kippenberg, T. J. .
SCIENCE, 2016, 351 (6271) :357-360