Functional dissection of the neural substrates for gravitaxic maze behavior in Drosophila melanogaster

被引:23
|
作者
Baker, Dean Adam
Beckingham, Kathleen Mary
Armstrong, James Douglas
机构
[1] Univ Edinburgh, Sch Informat, Edinburgh EH1 2QL, Midlothian, Scotland
[2] Rice Univ, Dept Biochem & Cell Biol, Houston, TX 77251 USA
基金
英国生物技术与生命科学研究理事会;
关键词
gravitaxis; geotaxis; behavior; Johnston's organ; central complex; mushroom bodies; shibire; mechanosensory;
D O I
10.1002/cne.21257
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
In animals, sensing gravity is supported by mechanosensory neurons that send information to the central brain for integration along with other modalities. In Drosophila, candidate sensory organs for detecting the gravity vector were predicted from the results of a recent forward genetic screen. This analysis also suggested possible roles for the central complex and antennal system in Drosophila. Using the same vertical maze assay employed in the original screen, we investigated the roles of these candidate neural structures by spatial and temporal inactivation of synaptic transmission with the GAL4/UAS-shibire[ts1] system. We correlate changes in the maze behavior of flies with specific inhibition of synaptic transmission for key brain neuropil that includes the central complex and antennoglomerular tract. Further, our results point toward a minimal, or nonexistent, role for the mushroom bodies.
引用
收藏
页码:756 / 764
页数:9
相关论文
共 50 条
  • [21] Morphological and Functional Evaluation of Axons and their Synapses during Axon Death in Drosophila melanogaster
    Paglione, Maria
    Rosell, Arnau Llobet
    Chatton, Jean-Yves
    Neukomm, Lukas J.
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2020, (157):
  • [22] Potencies of effector genes in silencing odor-guided behavior in Drosophila melanogaster
    Retzke, Tom
    Thoma, Michael
    Hansson, Bill S.
    Knaden, Markus
    JOURNAL OF EXPERIMENTAL BIOLOGY, 2017, 220 (10) : 1812 - 1819
  • [23] Acute and chronic effects of atmospheric oxygen on the feeding behavior of Drosophila melanogaster larvae
    Farzin, Manoush
    Albert, Todd
    Pierce, Nicholas
    VandenBrooks, John M.
    Dodge, Tahnee
    Harrison, Jon F.
    JOURNAL OF INSECT PHYSIOLOGY, 2014, 68 : 23 - 29
  • [24] Rhythmic Behavior Is Controlled by the SRm160 Splicing Factor in Drosophila melanogaster
    Beckwith, Esteban J.
    Hernando, Carlos E.
    Polcownuk, Sofia
    Bertolin, Agustina P.
    Mancini, Estefania
    Ceriani, M. Fernanda
    Yanovsky, Marcelo J.
    GENETICS, 2017, 207 (02) : 593 - 607
  • [25] Sensorimotor pathway controlling stopping behavior during chemotaxis in the Drosophila melanogaster larva
    Tastekin, Ibrahim
    Khandelwal, Avinash
    Tadres, David
    Fessner, Nico D.
    Truman, James W.
    Zlatic, Marta
    Cardona, Albert
    Louis, Matthieu
    ELIFE, 2018, 7
  • [26] The Drosophila visual system From neural circuits to behavior
    Zhu, Yan
    CELL ADHESION & MIGRATION, 2013, 7 (04) : 333 - 344
  • [27] Learning and memory in honeybees: From behavior to neural substrates
    Menzel, R
    Muller, U
    ANNUAL REVIEW OF NEUROSCIENCE, 1996, 19 : 379 - 404
  • [28] The Ion Transport Peptide Is a New Functional Clock Neuropeptide in the Fruit Fly Drosophila melanogaster
    Hermann-Luibl, Christiane
    Yoshii, Taishi
    Senthilan, Pingkalai R.
    Dircksen, Heinrich
    Helfrich-Foerster, Charlotte
    JOURNAL OF NEUROSCIENCE, 2014, 34 (29) : 9522 - 9536
  • [29] A Simple Way to Measure Alterations in Reward-seeking Behavior Using Drosophila melanogaster
    Zer, Shir
    Ryvkin, Julia
    Wilner, Harel J.
    Zak, Hila
    Shmueli, Anat
    Shohat-Ophir, Galit
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2016, (118):
  • [30] Fly Stampede 2.0: A Next Generation optomotor Assay for Walking Behavior in Drosophila Melanogaster
    Kim, Soomin
    Tellez, Kelly
    Buchan, Graham
    Lebestky, Tim
    FRONTIERS IN MOLECULAR NEUROSCIENCE, 2016, 9