Thermodynamic modeling of the La-Mn-Y-Zr-O system

被引:16
作者
Chen, Ming [1 ]
Grundy, A. Nicholas
Hallstedt, Bengt
Gauckler, Ludwig J.
机构
[1] Riso Natl Lab, DK-4000 Roskilde, Denmark
[2] Swiss Fed Inst Technol Zurich, Dept Mat, CH-8093 Zurich, Switzerland
[3] Rhein Westfal TH Aachen, D-52056 Aachen, Germany
来源
CALPHAD-COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMOCHEMISTRY | 2006年 / 30卷 / 04期
关键词
phase diagram; thermodynamic modeling; La-Mn-Y-Zr-O; solid oxide fuel cell (SOFC);
D O I
10.1016/j.calphad.2006.04.003
中图分类号
O414.1 [热力学];
学科分类号
摘要
Based on descriptions of the previously assessed sub-systems, we present a thermodynamic description of the La-Mn-Y-Zr-O system. Ideal extrapolations from ternaries to quaternaries and to La-Mn-Y-Zr-O are proved to be quite successful. The calculated isothermal sections of pseudo-ternaries at different temperatures in air are in good agreement with available experimental data. The thermodynamics at the LaMnO3-yttria-stabilized zirconia (YSZ) interface, which is of particular importance for solid oxide fuel cell (SOFC) applications, is discussed in detail. Based on phase equilibrium calculations, we conclude that La2Zr2O7 forms at the LaMnO3-YSZ interface due to its high chemical stability. Thermodynamically, the La2Zr2O7 formation cannot be prevented by increasing the La deficiency in La1 +/- xMnO3 +/-delta. Increasing the yttria content in YSZ can suppress and in the end prevent the La2Zr2O7 formation. Apart from the temperature and the oxygen partial pressure, other factors, like the phase assemblage at the interface, the La deficiency in La1 +/- xMnO3 +/-delta, the yttria content in YSZ and so on, also influence the amount of LaO1.5 or MnOx (from LaMnO3) dissolved in YSZ. (C) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:489 / 500
页数:12
相关论文
共 50 条
  • [21] Thermodynamic modeling of the La-Mg-Y system and Mg-based alloys database
    Du Zhenmin
    Guo Cuiping
    Li Changrong
    Zhang Weijing
    RARE METALS, 2006, 25 (05) : 492 - 500
  • [22] Thermodynamic assessment of the Zr-O binary system
    Liang, P
    Dupin, N
    Fries, SG
    Seifert, HJ
    Ansara, I
    Lukas, HL
    Aldinger, F
    ZEITSCHRIFT FUR METALLKUNDE, 2001, 92 (07): : 747 - 756
  • [23] Coupled experimental study and thermodynamic modeling of the MnO-Mn2O3-Ti2O3-TiO2 system
    Panda, Sourav Kumar
    Hudon, Pierre
    Jung, In-Ho
    CALPHAD-COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMOCHEMISTRY, 2019, 66
  • [24] Thermodynamic modeling of the Co-Ni-Y system
    Du, ZM
    Lü, DX
    INTERMETALLICS, 2005, 13 (06) : 586 - 595
  • [25] Thermodynamic modeling of the U-Nb-Zr ternary system
    Zhou, Peng
    Peng, Yingbiao
    Du, Yong
    Zhang, Lei
    Mo, Wenlin
    Fa, Tao
    Bai, Bin
    Wang, Xiaolin
    JOURNAL OF NUCLEAR MATERIALS, 2019, 523 : 157 - 171
  • [26] Phase equilibria and thermodynamic modeling in the Ge–Zr binary system
    Chunsheng Sha
    Liangcai Zhou
    Shuhong Liu
    Yong Du
    Tie Gang
    Honghui Xu
    Journal of Materials Science, 2011, 46 : 1405 - 1413
  • [27] Experimental investigation and thermodynamic modeling of the Fe - Si - Zr system
    Cui, Jiaxin
    Shen, Yansong
    Liu, Xinjun
    CALPHAD-COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMOCHEMISTRY, 2019, 65 : 385 - 401
  • [28] Thermodynamic Modeling of the Al-Li-Zr Ternary System
    Zhaohui Long
    Dongyu Cui
    Hongxing Hu
    Zhi Li
    Fucheng Yin
    Touwen Fan
    Journal of Phase Equilibria and Diffusion, 2020, 41 : 623 - 641
  • [29] Thermodynamic evaluation and modeling of the Fe-Co-O system
    Jung, IH
    Decterov, SA
    Pelton, AD
    Kim, HM
    Kang, YB
    ACTA MATERIALIA, 2004, 52 (02) : 507 - 519
  • [30] Thermodynamic Modeling of the Al-Li-Zr Ternary System
    Long, Zhaohui
    Cui, Dongyu
    Hu, Hongxing
    Li, Zhi
    Yin, Fucheng
    Fan, Touwen
    JOURNAL OF PHASE EQUILIBRIA AND DIFFUSION, 2020, 41 (05) : 623 - 641