New method for parameter estimation of an electrochemical-thermal coupling model for LiCoO2 battery

被引:74
作者
Li, Junfu [1 ]
Wang, Lixin [1 ]
Lyu, Chao [1 ]
Wang, Han [2 ]
Liu, Xuan [1 ]
机构
[1] Harbin Inst Technol, Sch Elect Engn & Automat, Harbin 150001, Heilongjiang, Peoples R China
[2] Harbin Inst Technol, Sch Astronaut, Harbin 150001, Heilongjiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Accurate prediction of battery behaviors; Electrochemical-thermal coupling model; Excitation response analysis; Mechanistic parameters; SINGLE-PARTICLE MODEL; LITHIUM-ION BATTERIES; GENETIC ALGORITHM APPROACH; CHARGE-DISCHARGE RATES; ORTHOGONAL COLLOCATION; APPROXIMATE SOLUTION; INSERTION CELL; DIFFUSION; SIMULATION; BEHAVIOR;
D O I
10.1016/j.jpowsour.2015.12.058
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
An accurate prediction of battery behaviors guarantees the reliability, security, and efficiency for current tasks. An electrochemical-thermal (ECT) coupling model for LiCoO2 battery is proposed to describe charge and discharge behaviors. With lumped thermal analysis, calculations of heat generation, conduction, and dissipation are added to a simplified electrochemical model. Battery mechanistic parameters are reasonably reduced and regrouped to reduce estimation complexity. Based on excitation response analysis, identification conditions are specially designed to obtain mechanistic parameters. Simulations are carried out to validate the applicability of model at different operating conditions. Simulation results of terminal voltage and surface temperature are in good agreement with actual experimental measurements at lower C rates and dynamic load currents. With proposed parameter estimation method, the simplified ECT coupling model can be applied to similar battery systems. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:220 / 230
页数:11
相关论文
共 43 条
[1]   Comparison between computer simulations and experimental data for high-rate discharges of plastic lithium-ion batteries [J].
Arora, P ;
Doyle, M ;
Gozdz, AS ;
White, RE ;
Newman, J .
JOURNAL OF POWER SOURCES, 2000, 88 (02) :219-231
[2]   Numerical simulation of thermal behavior of lithium-ion secondary batteries using the enhanced single particle model [J].
Baba, Naoki ;
Yoshida, Hiroaki ;
Nagaoka, Makoto ;
Okuda, Chikaaki ;
Kawauchi, Shigehiro .
JOURNAL OF POWER SOURCES, 2014, 252 :214-228
[3]   Lithium metal electrode kinetics and ionic conductivity of the solid lithium ion conductors "Li7La3Zr2O12" and Li7-xLa3Zr2-xTaxO12 with garnet-type structure [J].
Buschmann, Henrik ;
Berendts, Stefan ;
Mogwitz, Boris ;
Janek, Juergen .
JOURNAL OF POWER SOURCES, 2012, 206 :236-244
[4]   Lithium ion cell modeling using orthogonal collocation on finite elements [J].
Cai, Long ;
White, Ralph E. .
JOURNAL OF POWER SOURCES, 2012, 217 :248-255
[5]   Reduction of Model Order Based on Proper Orthogonal Decomposition for Lithium-Ion Battery Simulations [J].
Cai, Long ;
White, Ralph E. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (03) :A154-A161
[6]   Spurious potential dependence of diffusion coefficients in Li+ insertion electrodes measured with PITT [J].
Deiss, E .
ELECTROCHIMICA ACTA, 2002, 47 (25) :4027-4034
[7]   Comparison of modeling predictions with experimental data from plastic lithium ion cells [J].
Doyle, M ;
Newman, J ;
Gozdz, AS ;
Schmutz, CN ;
Tarascon, JM .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (06) :1890-1903
[8]   MODELING OF GALVANOSTATIC CHARGE AND DISCHARGE OF THE LITHIUM POLYMER INSERTION CELL [J].
DOYLE, M ;
FULLER, TF ;
NEWMAN, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1993, 140 (06) :1526-1533
[9]   Development of a universal modeling tool for rechargeable lithium batteries [J].
Dubarry, Matthieu ;
Liaw, Bor Yann .
JOURNAL OF POWER SOURCES, 2007, 174 (02) :856-860
[10]   Thermal modeling of a cylindrical LiFePO4/graphite lithium-ion battery [J].
Forgez, Christophe ;
Do, Dinh Vinh ;
Friedrich, Guy ;
Morcrette, Mathieu ;
Delacourt, Charles .
JOURNAL OF POWER SOURCES, 2010, 195 (09) :2961-2968