Three-Dimensional Riemannian Manifolds and Ricci Solitons

被引:13
作者
Chaubey, Sudhakar K. [1 ]
De, Uday Chand [2 ]
机构
[1] Univ Technol & Appl Sci Shinas, Dept Math, POB 77, Shinas 324, Oman
[2] Univ Calcutta, Dept Math, Kolkata, W Bengal, India
关键词
Riemannian manifolds; Ricci solitons; gradient Ricci solitons; semi-symmetric metric connection;
D O I
10.2989/16073606.2021.1895352
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We characterize the three-dimensional Riemannian manifolds endowed with a semi-symmetric metric rho-connection if its Riemannian metrics are Ricci and gradient Ricci solitons, respectively. It is proved that if a three-dimensional Riemannian manifold equipped with a semi-symmetric metric rho-connection admits a Ricci soliton, then the manifold possesses the constant sectional curvature -1 and the soliton is expanding with lambda = -2. Next, we study the gradient Ricci solitons in such a manifold. Finally, we construct a non-trivial example of a three-dimensional Riemannian manifold endowed with a semi-symmetric metric rho-connection admitting a Ricci soliton and validate our some results.
引用
收藏
页码:765 / 778
页数:14
相关论文
共 50 条
  • [31] Generalized Ricci Solitons on N(κ)-contact Metric Manifolds
    Mandal, Tarak
    Biswas, Urmila
    Sarkar, Avijit
    KYUNGPOOK MATHEMATICAL JOURNAL, 2023, 63 (02): : 313 - 324
  • [32] ALMOST CONTACT 3-MANIFOLDS AND RICCI SOLITONS
    Cho, Jong Taek
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2013, 10 (01)
  • [33] RICCI SOLITON ON A CLASS OF RIEMANNIAN MANIFOLDS UNDER D-ISOMETRIC DEFORMATION
    Adel, Delloum
    Gherici, Beldjilali
    BULLETIN OF THE INSTITUTE OF MATHEMATICS ACADEMIA SINICA NEW SERIES, 2023, 18 (03): : 269 - 282
  • [34] Ricci almost solitons on semi-Riemannian warped products
    Borges, Valter
    Tenenblat, Keti
    MATHEMATISCHE NACHRICHTEN, 2022, 295 (01) : 22 - 43
  • [35] Three-dimensional homogeneous Lorentzian Yamabe solitons
    Calvino-Louzao, E.
    Seoane-Bascoy, J.
    Vazquez-Abal, M. E.
    Vazquez-Lorenzo, R.
    ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 2012, 82 (02): : 193 - 203
  • [36] On Ricci Eigenvalues of locally homogeneous Riemannian 3-manifolds
    Kowalski, O
    Nikcevic, SZ
    GEOMETRIAE DEDICATA, 1996, 62 (01) : 65 - 72
  • [37] SPLITTING THEOREMS ON COMPLETE RIEMANNIAN MANIFOLDS WITH NONNEGATIVE RICCI CURVATURE
    Farina, Alberto
    Ocariz, Jesus
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2021, 41 (04) : 1929 - 1937
  • [38] Three-dimensional Ivanov-Petrova manifolds
    Calvaruso, Giovanni
    JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (06)
  • [39] Geometry of Indefinite Kenmotsu Manifolds as *η-Ricci-Yamabe Solitons
    Haseeb, Abdul
    Bilal, Mohd
    Chaubey, Sudhakar K.
    Khan, Mohammad Nazrul Islam
    AXIOMS, 2022, 11 (09)
  • [40] ETA-RICCI SOLITONS ON LP-SASAKIAN MANIFOLDS
    Majhi, Pradip
    Kar, Debabrata
    REVISTA DE LA UNION MATEMATICA ARGENTINA, 2019, 60 (02): : 391 - 405