Automatic method for glaucoma diagnosis using a three-dimensional convoluted neural network

被引:19
作者
Carvalho, Nonato Rodrigues de Sales [1 ,2 ]
Rodrigues, Maria da Conceicao Leal Carvalho [3 ]
Filho, Antonio Oseas de Carvalho [1 ,2 ]
Mathew, Mano Joseph [4 ]
机构
[1] Univ Fed Piaui, Rua Cicero Duarte SN,Campus Picos, BR-64600000 Picos, PI, Brazil
[2] Univ Fed Piaui, Elect Engn, Teresina, PI, Brazil
[3] Fed Inst Piaui, Av Joaquim Manoel, BR-18003824 Valenca Do Piaui, PI, Brazil
[4] Ecole Ingn Gen Informat & Technol Numer, Ave Republ, Paris, France
关键词
Glaucoma; 3DCNN; 2D images; 3D images; Volumes; AGREEMENT;
D O I
10.1016/j.neucom.2020.07.146
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Glaucoma is as an abnormality of the optic system that alters the patient's vision, causing damage to the nervous system and potentially increasing intraocular pressure. Early detection is essential in glaucoma - a progressive disease - in order to initiate preventive treatment and thus avoid total vision loss in patients. Efficient glaucoma diagnosis is expensive and time consuming. Considering these aspects, computer vision techniques have been developed to obtain a rapid and cost-effective diagnosis. This paper presents a new method of classification for glaucomatous and healthy background images of the eye. Here, we propose the use of a three-dimensional convolutional neural network (3DCNN) applied to volumes constructed from a transformation, which converts two-dimensional (2D) background images of the eye. The proposed method showed favorable results, reaching 96.4% accuracy, 100% sensitivity, 93.02% specificity, a 0.965 area under the curve (AUC), and a 0.928 Kappa. (c) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页码:72 / 83
页数:12
相关论文
共 27 条
[21]   Development of a deep residual learning algorithm to screen for glaucoma from fundus photography [J].
Shibata, Naoto ;
Tanito, Masaki ;
Mitsuhashi, Keita ;
Fujino, Yuri ;
Matsuura, Masato ;
Murata, Hiroshi ;
Asaoka, Ryo .
SCIENTIFIC REPORTS, 2018, 8
[22]  
Simonyan K, 2015, Arxiv, DOI arXiv:1409.1556
[23]   Image processing based automatic diagnosis of glaucoma using wavelet features of segmented optic disc from fundus image [J].
Singh, Anushikha ;
Dutta, Malay Kishore ;
ParthaSarathi, M. ;
Uher, Vaclav ;
Burget, Radim .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2016, 124 :108-120
[24]  
Sivaswamy J., 2015, JSM Biomedical Imaging Data Papers, V2, P1004, DOI DOI 10.1109/ISBI.2014.6867807
[25]  
Sivaswamy J, 2014, I S BIOMED IMAGING, P53, DOI 10.1109/ISBI.2014.6867807
[26]   Automatic methods for diagnosis of glaucoma using texture descriptors based on phylogenetic diversity [J].
Vieira de Carvalho Junior, Antonio Sousa ;
Carvalho, Edson Damasceno ;
de Carvalho Filho, Antonio Oseas ;
de Sousa, Alcilene Dalilia ;
Silva, Aristofanes Correa ;
Gattass, Marcelo .
COMPUTERS & ELECTRICAL ENGINEERING, 2018, 71 :102-114
[27]   Asymmetric 3D Convolutional Neural Networks for action recognition [J].
Yang, Hao ;
Yuan, Chunfeng ;
Li, Bing ;
Du, Yang ;
Xing, Junliang ;
Hu, Weiming ;
Maybank, Stephen J. .
PATTERN RECOGNITION, 2019, 85 :1-12