Automatic method for glaucoma diagnosis using a three-dimensional convoluted neural network

被引:19
作者
Carvalho, Nonato Rodrigues de Sales [1 ,2 ]
Rodrigues, Maria da Conceicao Leal Carvalho [3 ]
Filho, Antonio Oseas de Carvalho [1 ,2 ]
Mathew, Mano Joseph [4 ]
机构
[1] Univ Fed Piaui, Rua Cicero Duarte SN,Campus Picos, BR-64600000 Picos, PI, Brazil
[2] Univ Fed Piaui, Elect Engn, Teresina, PI, Brazil
[3] Fed Inst Piaui, Av Joaquim Manoel, BR-18003824 Valenca Do Piaui, PI, Brazil
[4] Ecole Ingn Gen Informat & Technol Numer, Ave Republ, Paris, France
关键词
Glaucoma; 3DCNN; 2D images; 3D images; Volumes; AGREEMENT;
D O I
10.1016/j.neucom.2020.07.146
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Glaucoma is as an abnormality of the optic system that alters the patient's vision, causing damage to the nervous system and potentially increasing intraocular pressure. Early detection is essential in glaucoma - a progressive disease - in order to initiate preventive treatment and thus avoid total vision loss in patients. Efficient glaucoma diagnosis is expensive and time consuming. Considering these aspects, computer vision techniques have been developed to obtain a rapid and cost-effective diagnosis. This paper presents a new method of classification for glaucomatous and healthy background images of the eye. Here, we propose the use of a three-dimensional convolutional neural network (3DCNN) applied to volumes constructed from a transformation, which converts two-dimensional (2D) background images of the eye. The proposed method showed favorable results, reaching 96.4% accuracy, 100% sensitivity, 93.02% specificity, a 0.965 area under the curve (AUC), and a 0.928 Kappa. (c) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页码:72 / 83
页数:12
相关论文
共 27 条
[1]   A deep learning model for the detection of both advanced and early glaucoma using fundus photography [J].
Ahn, Jin Mo ;
Kim, Sangsoo ;
Ahn, Kwang-Sung ;
Cho, Sung-Hoon ;
Lee, Kwan Bok ;
Kim, Ungsoo Samuel .
PLOS ONE, 2018, 13 (11)
[2]  
Al-Bander B, 2017, INT MULTICONF SYST, P207, DOI 10.1109/SSD.2017.8166974
[3]   Using Deep Learning and Transfer Learning to Accurately Diagnose Early-Onset Glaucoma From Macular Optical Coherence Tomography Images [J].
Asaoka, Ryo ;
Murata, Hiroshi ;
Hirasawa, Kazunori ;
Fujino, Yuri ;
Matsuura, Masato ;
Miki, Atsuya ;
Kanamoto, Takashi ;
Ikeda, Yoko ;
Mori, Kazuhiko ;
Iwase, Aiko ;
Shoji, Nobuyuki ;
Inoue, Kenji ;
Yamagami, Junkichi ;
Araie, Makoto .
AMERICAN JOURNAL OF OPHTHALMOLOGY, 2019, 198 :136-145
[4]  
Chakravarty A., ARXIV PREPRINT ARXIV
[5]   An hybrid feature space from texture information and transfer learning for glaucoma classification [J].
Claro, Maila ;
Veras, Rodrigo ;
Santana, Andre ;
Araujo, Flavio ;
Silva, Romuere ;
Almeida, Joao ;
Leite, Daniel .
JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2019, 64
[7]   Texture based on geostatistic for glaucoma diagnosis from fundus eye image [J].
de Sousa, Jefferson Alves ;
de Paiva, Anselmo Cardoso ;
Sousa de Almeida, Joao Dallyson ;
Silva, Aristofanes Correa ;
Braz Junior, Geraldo ;
Gattass, Marcelo .
MULTIMEDIA TOOLS AND APPLICATIONS, 2017, 76 (18) :19173-19190
[8]   Convolutional neural network and texture descriptor-based automatic detection and diagnosis of glaucoma [J].
dos Santos Ferreira, Marcos Vinicius ;
de Carvalho Filho, Antonio Oseas ;
de Sousa, Alcilene Dalilia ;
Silva, Aristofanes Correa ;
Gattass, Marcelo .
EXPERT SYSTEMS WITH APPLICATIONS, 2018, 110 :250-263
[9]  
Fumero F, 2011, COMP MED SY
[10]  
Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1