A computer-assisted proof of the existence of Smale horseshoe for the folded-towel map

被引:0
作者
Gierzkiewicz, Anna [1 ]
机构
[1] Agr Univ Krakow, Dept Appl Math, Ul Balicka 253c, PL-30198 Krakow, Poland
来源
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION | 2021年 / 96卷
关键词
Computer assisted proof; Symbolic Dynamics; Hyperbolicity; Folded towel map; COVERING RELATIONS; HYPERCHAOS;
D O I
10.1016/j.cnsns.2020.105680
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper contains a rigorous proof of existence of symbolic dynamics chaos in the generalized Henon map's 4th iterate H-4, which was conjectured in the paper A 3D Smale Horseshoe in a Hyperchaotic Discrete-Time System of Li and Yang, 2007. We prove also the uniform hyperbolicity of the invariant set with symbolic dynamics. The proofs are computer assisted with the use of C++ library CAPD for interval arithmetic, differentiation and integration. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:9
相关论文
共 19 条
[1]   MAXIMUM HYPERCHAOS IN GENERALIZED HENON MAPS [J].
BAIER, G ;
KLEIN, M .
PHYSICS LETTERS A, 1990, 151 (6-7) :281-284
[2]   When chaos meets hyperchaos: 4D Rossler model [J].
Barrio, Roberto ;
Angeles Martinez, M. ;
Serrano, Sergio ;
Wilczak, Daniel .
PHYSICS LETTERS A, 2015, 379 (38) :2300-2305
[3]  
Gierzkiewicz A., C SOURCE CODE
[4]   A computer-assisted proof of symbolic dynamics in Hyperion's rotation [J].
Gierzkiewicz, Anna ;
Zgliczynski, Piotr .
CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2019, 131 (07)
[5]   Three-dimensional Henon-like maps and wild Lorenz-like attractors [J].
Gonchenko, SV ;
Ovsyannikov, II ;
Simó, C ;
Turaev, D .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2005, 15 (11) :3493-3508
[6]   Theory and experimental realization of observer-based discrete-time hyperchaos synchronization [J].
Grassi, G ;
Miller, DA .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2002, 49 (03) :373-378
[7]   2-DIMENSIONAL MAPPING WITH A STRANGE ATTRACTOR [J].
HENON, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1976, 50 (01) :69-77
[8]  
HIRSCH M, 1977, LECT NOTES MATH, V583
[9]   A 3D Smale horseshoe in a hyperchaotic discrete-time system [J].
Li, Qingdu ;
Yang, Xiao-Song .
DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2007, 2007
[10]  
Miranda C., 1940, Boll. Un. Mat. Ital.