A new criterion for the logarithmic Sobolev inequality and two applications

被引:38
作者
Otto, Felix
Reznikoff, Maria G. [1 ]
机构
[1] Univ Bonn, Inst Angew Math, D-5300 Bonn, Germany
[2] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
基金
美国国家科学基金会;
关键词
logarithmic Sobolev inequality; decay of correlations; Glauber dynanucs;
D O I
10.1016/j.jfa.2006.10.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a criterion for the logarithmic Sobolev inequality (LSI) on the product space X-1 x (...) x X-N. We have in mind an N-site lattice, unbounded continuous spin variables, and Glauber dynamics. The interactions are described by the Hamiltonian H of the Gibbs measure. The criterion for LSI is formulated in terms of the LSI constants of the single-site conditional measures and the size of the off-diagonal entries of the Hessian of H. It is optimal for Gaussians with positive covariance matrix. To illustrate, we give two applications: one with weak interactions and one with strong interactions and a decay of correlations condition. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:121 / 157
页数:37
相关论文
共 21 条
[1]  
Bakry D., 1985, LECT NOTES MATH, V1123, P177, DOI DOI 10.1007/BFB0075847
[2]  
BLOWER G, MATHPR0505536
[3]   The Log-Sobolev inequality for unbounded spin systems [J].
Bodineau, T ;
Helffer, B .
JOURNAL OF FUNCTIONAL ANALYSIS, 1999, 166 (01) :168-178
[4]   LOGARITHMIC SOBOLEV INEQUALITIES [J].
GROSS, L .
AMERICAN JOURNAL OF MATHEMATICS, 1975, 97 (04) :1061-1083
[5]  
GRUNEWALD N, 2005, 2 SCALE PROOF LOGARI
[6]  
Guionnet A, 2003, LECT NOTES MATH, V1801, P1
[7]   LOGARITHMIC SOBOLEV INEQUALITIES AND STOCHASTIC ISING-MODELS [J].
HOLLEY, R ;
STROOCK, D .
JOURNAL OF STATISTICAL PHYSICS, 1987, 46 (5-6) :1159-1194
[8]  
Ledoux M, 2001, LECT NOTES MATH, V1755, P167
[9]   SPECTRAL GAP AND LOGARITHMIC SOBOLEV INEQUALITY FOR KAWASAKI AND GLAUBER DYNAMICS [J].
LU, SL ;
YAU, HT .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 156 (02) :399-433
[10]   APPROACH TO EQUILIBRIUM OF GLAUBER DYNAMICS IN THE ONE-PHASE REGION .2. THE GENERAL-CASE [J].
MARTINELLI, F ;
OLIVIERI, E .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 161 (03) :487-514