Stochastic synchronization in globally coupled phase oscillators

被引:6
作者
Sakaguchi, H [1 ]
机构
[1] Kyushu Univ, Interdisciplinary Grad Sch Engn Sci, Dept Appl Sci Elect & Mat, Fukuoka 8168580, Japan
来源
PHYSICAL REVIEW E | 2002年 / 66卷 / 05期
关键词
D O I
10.1103/PhysRevE.66.056129
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Cooperative effects of periodic force and noise in globally coupled systems are studied using a nonlinear diffusion equation for the number density. The amplitude of the order parameter oscillation is enhanced in an intermediate range of noise strength for a globally coupled bistable system, and the order parameter oscillation is entrained to the external periodic force in an intermediate range of noise strength. These enhancement phenomena of the response of the order parameter in the deterministic equations are interpreted as stochastic resonance and stochastic synchronization in globally coupled systems.
引用
收藏
页码:5 / 056129
页数:5
相关论文
共 50 条
  • [41] Cluster-mediated synchronization dynamics in globally coupled oscillators with inertia
    Kim, Cook Hyun
    Park, Jinha
    Kim, Young Jin
    Park, Sangjoon
    Boccaletti, S.
    Kahng, B.
    CHAOS SOLITONS & FRACTALS, 2025, 196
  • [42] Clustering and phase synchronization in populations of coupled phase oscillators
    Cascallares, Guadalupe
    Gleiser, Pablo M.
    EUROPEAN PHYSICAL JOURNAL B, 2015, 88 (10)
  • [43] Mode locking in systems of globally coupled phase oscillators
    Eydam, Sebastian
    Wolfrum, Matthias
    PHYSICAL REVIEW E, 2017, 96 (05)
  • [44] CLUSTERING AND SLOW SWITCHING IN GLOBALLY COUPLED PHASE OSCILLATORS
    HANSEL, D
    MATO, G
    MEUNIER, C
    PHYSICAL REVIEW E, 1993, 48 (05): : 3470 - 3477
  • [45] Adaptive frequency model for phase-frequency synchronization in large populations of globally coupled nonlinear oscillators
    Acebron, JA
    Spigler, R
    PHYSICAL REVIEW LETTERS, 1998, 81 (11) : 2229 - 2232
  • [46] Hyperbolic angular statistics for globally coupled phase oscillators
    Hongler, M. -O.
    Filliger, R.
    Blanchard, Ph.
    EPL, 2010, 89 (01)
  • [47] Clustering and phase synchronization in populations of coupled phase oscillators
    Guadalupe Cascallares
    Pablo M. Gleiser
    The European Physical Journal B, 2015, 88
  • [48] Energy exchange in globally coupled mechanical phase oscillators
    Sosa, Raul, I
    Zanette, Damian H.
    PHYSICAL REVIEW E, 2020, 102 (01)
  • [49] Origin of Bellerophon states in globally coupled phase oscillators
    Xu, Can
    Boccaletti, Stefano
    Guan, Shuguang
    Zheng, Zhigang
    PHYSICAL REVIEW E, 2018, 98 (05)
  • [50] Extreme sensitivity to detuning for globally coupled phase oscillators
    Ashwin, P
    Burylko, O
    Maistrenko, Y
    Popovych, O
    PHYSICAL REVIEW LETTERS, 2006, 96 (05)