Numerical evaluation of three-dimensional time-harmonic Green's functions for a nonisotropic full-space

被引:15
作者
Dravinski, M [1 ]
Zheng, T [1 ]
机构
[1] Univ So Calif, Dept Aerosp & Mech Engn, Los Angeles, CA 90089 USA
关键词
D O I
10.1016/S0165-2125(00)00034-2
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
A method for numerical evaluation of three-dimensional time-harmonic Green's functions for nonisotropic media is proposed. The key feature of the method is that, by dealing with entire elastodynamic state vector, repeated evaluation of the common parts of the integrands can be avoided. This results in a more efficient algorithm when compared with the standard sequential integrands' evaluations. When compared to the sequential approach the method is more than three times faster in evaluating the displacement elastodynamic state Vector and more than five times faster in calculation of the stress elastodynamic state vector. Consequently, this approach may be useful in numerical modeling of scattering of elastic waves in nonisotropic media. (C) 2000 Published by Elsevier Science B.V. All rights reserved.
引用
收藏
页码:141 / 151
页数:11
相关论文
共 13 条
[1]  
Beskos DE, 1987, Applied Mechanics Reviews, V40, P1, DOI [DOI 10.1115/1.3149529, 10.1115/1.3149529]
[2]  
BOUCHON M, 1994, B SEISMOL SOC AM, V84, P1869
[3]  
Brebbia CA., 1984, BOUNDARY ELEMENT TEC, DOI DOI 10.1007/978-3-642-48860-3
[4]  
Deans S., 1983, RADON TRANSFORM SOME
[5]  
Eringen AC, 1975, Elastodynamics, Vol II. Linear theory., V2
[6]   Green's tensor function for Lamb's problem: The general anisotropic case [J].
Spies, M .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1997, 102 (04) :2438-2441
[7]   Inversion of elastic waveform data in anisotropic solids using the delta-function representation of the Green's function [J].
Tewary, VK .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1998, 104 (03) :1716-1719
[8]  
VANLOAN CF, 1997, INTRO SCI COMPUTING
[9]   3-DIMENSIONAL TIME-HARMONIC ELASTODYNAMIC GREENS-FUNCTIONS FOR ANISOTROPIC SOLIDS [J].
WANG, CY ;
ACHENBACH, JD .
PROCEEDINGS OF THE ROYAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1995, 449 (1937) :441-458
[10]  
Zheng T, 1998, EARTHQUAKE ENG STRUC, V27, P243, DOI 10.1002/(SICI)1096-9845(199803)27:3<243::AID-EQE727>3.0.CO