Integrable Discrete Nets in Grassmannians

被引:4
作者
Adler, Vsevolod Eduardovich [1 ,2 ]
Bobenko, Alexander Ivanovich [2 ]
Suris, Yuri Borisovich [2 ]
机构
[1] LD Landau Theoret Phys Inst, Chernogolovka 142432, Russia
[2] Tech Univ Berlin, Inst Math, D-10623 Berlin, Germany
关键词
discrete differential geometry; multidimensional consistency; Grassmannian; noncommutative Darboux system; QUADRILATERAL LATTICES; GEOMETRY; SURFACES; DARBOUX;
D O I
10.1007/s11005-009-0328-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider discrete nets in Grassmannians G(r)(d), which generalize Q-nets ( maps Z(N) -> P(d) with planar elementary quadrilaterals) and Darboux nets (P(d) -valued maps defined on the edges of Z(N) such that quadruples of points corresponding to elementary squares are all collinear). We give a geometric proof of integrability ( multidimensional consistency) of these novel nets, and show that they are analytically described by the noncommutative discrete Darboux system.
引用
收藏
页码:131 / 139
页数:9
相关论文
共 12 条
[1]  
[Anonymous], CMR P LECT NOTES
[2]  
Bobenko A, 1996, J REINE ANGEW MATH, V475, P187
[3]  
Bobenko A, 1996, J DIFFER GEOM, V43, P527
[4]  
Bobenko A., 2008, GRADUATE STUDIES MAT, V98
[5]   On organizing principles of discrete differential geometry. Geometry of spheres [J].
Bobenko, A. I. ;
Suris, Yu. B. .
RUSSIAN MATHEMATICAL SURVEYS, 2007, 62 (01) :1-43
[6]   LATTICE AND Q-DIFFERENCE DARBOUX-ZAKHAROV-MANAKOV SYSTEMS VIA PARTIAL-DERIVATIVE-DRESSING METHOD [J].
BOGDANOV, LV ;
KONOPELCHENKO, BG .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (05) :L173-L178
[7]   Transformations of quadrilateral lattices [J].
Doliwa, A ;
Santini, PM ;
Mañas, M .
JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (02) :944-990
[8]   Multidimensional quadrilateral lattices are integrable [J].
Doliwa, A ;
Santini, PM .
PHYSICS LETTERS A, 1997, 233 (4-6) :365-372
[9]   Discrete asymptotic nets and W-congruences in Plucker line geometry [J].
Doliwa, A .
JOURNAL OF GEOMETRY AND PHYSICS, 2001, 39 (01) :9-29
[10]  
DOLIWA A, ARXIV08010512NLINSI