Superionic Diffusion through Frustrated Energy Landscape

被引:121
作者
Di Stefano, Davide [1 ]
Miglio, Anna [1 ]
Robeyns, Koen [1 ]
Filinchuk, Yaroslav [1 ]
Lechartier, Marine [2 ]
Senyshyn, Anatoliy [3 ]
Ishida, Hiroyuki [4 ]
Spannenberger, Stefan [5 ]
Prutsch, Denise [6 ]
Lunghammer, Sarah [6 ]
Rettenwander, Daniel [6 ]
Wilkening, Martin [6 ]
Roling, Bernhard [5 ]
Kato, Yuki [2 ]
Hautier, Geoffroy [1 ]
机构
[1] Catholic Univ Louvain, Inst Condensed Matter & Nanosci, Chemin Etoiles 8, B-1348 Louvain La Neuve, Belgium
[2] Toyota Motor Europe NV SA, Adv Technol 1, Battery AT, Hoge Wei 33, B-1930 Zaventem, Belgium
[3] Tech Univ Munich, Heinz Maier Leibnitz Zentrum, D-85748 Garching, Germany
[4] Toray Res Ctr Ltd, 3-3-7 Sonoyama, Otsu, Shiga 5208567, Japan
[5] Philipps Univ Marburg, Dept Chem, D-35032 Marburg, Germany
[6] Graz Univ Technol, Inst Chem & Technol Mat, Stremayrgasse 9, A-8010 Graz, Austria
关键词
IONIC-CONDUCTIVITY; CRYSTAL-STRUCTURES; LI; TRANSPORT; DYNAMICS; INTERCALATION; ELECTROLYTES; DISORDER; LI6PS5X; NA;
D O I
10.1016/j.chempr.2019.07.001
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Solid-state materials with high ionic conduction are necessary for many technologies, including all-solid-state lithium (Li)-ion batteries. Understanding how crystal structure dictates ionic diffusion is at the root of the development of fast ionic conductors. Here, we show that LiTi2(PS4)(3) exhibits a Li-ion diffusion coefficient about an order of magnitude higher than that of current state-of-the-art Li superionic conductors. We rationalize this observation by the unusual crystal structure of LiTi2(PS4)(3), which offers no regular tetrahedral or octahedral sites for Li to favorably occupy. This creates a smooth, frustrated energy landscape resembling the energy landscapes present in liquids more than those in typical solids. This frustrated energy landscape leads to a high diffusion coefficient, combining low activation energy with a high pre-factor.
引用
收藏
页码:2450 / 2460
页数:11
相关论文
共 39 条
[31]   Degradation of 2,4-dichlorophenol in aqueous solution by sono-Fenton method [J].
Ranjit, Praveena Juliya Dorathi ;
Palanivelu, Kandasany ;
Lee, Chang-Soo .
KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2008, 25 (01) :112-117
[32]   Materials Design Rules for Multivalent Ion Mobility in Intercalation Structures [J].
Rong, Ziqin ;
Malik, Rahul ;
Canepa, Pieremanuele ;
Gautam, Gopalakrishnan Sai ;
Liu, Miao ;
Jain, Anubhav ;
Persson, Kristin ;
Ceder, Gerbrand .
CHEMISTRY OF MATERIALS, 2015, 27 (17) :6016-6021
[33]   All-Solid-State Rechargeable Lithium Batteries Using LiTi2(PS4)3 Cathode with Li2S-P2S5 Solid Electrolyte [J].
Shin, Bum Ryong ;
Jung, Yoon Seok .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2014, 161 (01) :A154-A159
[34]   Tracer diffusion experiments on LISICON and its solid solutions by means of neutron radiography [J].
Takai, S ;
Kurihara, K ;
Yoneda, K ;
Fujine, S ;
Kawabata, Y ;
Esaka, T .
SOLID STATE IONICS, 2004, 171 (1-2) :107-112
[35]   Understanding Ionic Conductivity Trends in Polyborane Solid Electrolytes from Ab Initio Molecular Dynamics [J].
Varley, Joel B. ;
Kweon, Kyoung ;
Mehta, Prateek ;
Shea, Patrick ;
Heo, Tae Wook ;
Udovic, Terrence J. ;
Stavila, Vitalie ;
Wood, Brandon C. .
ACS ENERGY LETTERS, 2017, 2 (01) :250-255
[36]   Roles of phonon amplitude and low-energy optical phonons on superionic conduction [J].
Wakamura, K .
PHYSICAL REVIEW B, 1997, 56 (18) :11593-11599
[37]  
Wang Y, 2015, NAT MATER, V14, P1026, DOI [10.1038/nmat4369, 10.1038/NMAT4369]
[38]   MECHANISM OF FAST ION-TRANSPORT IN SOLIDS [J].
WHITTINGHAM, MS .
ELECTROCHIMICA ACTA, 1975, 20 (08) :575-583
[39]  
YAO YFY, 1967, J INORG NUCL CHEM, V29, P2453