Superionic Diffusion through Frustrated Energy Landscape

被引:114
作者
Di Stefano, Davide [1 ]
Miglio, Anna [1 ]
Robeyns, Koen [1 ]
Filinchuk, Yaroslav [1 ]
Lechartier, Marine [2 ]
Senyshyn, Anatoliy [3 ]
Ishida, Hiroyuki [4 ]
Spannenberger, Stefan [5 ]
Prutsch, Denise [6 ]
Lunghammer, Sarah [6 ]
Rettenwander, Daniel [6 ]
Wilkening, Martin [6 ]
Roling, Bernhard [5 ]
Kato, Yuki [2 ]
Hautier, Geoffroy [1 ]
机构
[1] Catholic Univ Louvain, Inst Condensed Matter & Nanosci, Chemin Etoiles 8, B-1348 Louvain La Neuve, Belgium
[2] Toyota Motor Europe NV SA, Adv Technol 1, Battery AT, Hoge Wei 33, B-1930 Zaventem, Belgium
[3] Tech Univ Munich, Heinz Maier Leibnitz Zentrum, D-85748 Garching, Germany
[4] Toray Res Ctr Ltd, 3-3-7 Sonoyama, Otsu, Shiga 5208567, Japan
[5] Philipps Univ Marburg, Dept Chem, D-35032 Marburg, Germany
[6] Graz Univ Technol, Inst Chem & Technol Mat, Stremayrgasse 9, A-8010 Graz, Austria
来源
CHEM | 2019年 / 5卷 / 09期
关键词
IONIC-CONDUCTIVITY; CRYSTAL-STRUCTURES; LI; TRANSPORT; DYNAMICS; INTERCALATION; ELECTROLYTES; DISORDER; LI6PS5X; NA;
D O I
10.1016/j.chempr.2019.07.001
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Solid-state materials with high ionic conduction are necessary for many technologies, including all-solid-state lithium (Li)-ion batteries. Understanding how crystal structure dictates ionic diffusion is at the root of the development of fast ionic conductors. Here, we show that LiTi2(PS4)(3) exhibits a Li-ion diffusion coefficient about an order of magnitude higher than that of current state-of-the-art Li superionic conductors. We rationalize this observation by the unusual crystal structure of LiTi2(PS4)(3), which offers no regular tetrahedral or octahedral sites for Li to favorably occupy. This creates a smooth, frustrated energy landscape resembling the energy landscapes present in liquids more than those in typical solids. This frustrated energy landscape leads to a high diffusion coefficient, combining low activation energy with a high pre-factor.
引用
收藏
页码:2450 / 2460
页数:11
相关论文
共 39 条
  • [31] Degradation of 2,4-dichlorophenol in aqueous solution by sono-Fenton method
    Ranjit, Praveena Juliya Dorathi
    Palanivelu, Kandasany
    Lee, Chang-Soo
    [J]. KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2008, 25 (01) : 112 - 117
  • [32] Materials Design Rules for Multivalent Ion Mobility in Intercalation Structures
    Rong, Ziqin
    Malik, Rahul
    Canepa, Pieremanuele
    Gautam, Gopalakrishnan Sai
    Liu, Miao
    Jain, Anubhav
    Persson, Kristin
    Ceder, Gerbrand
    [J]. CHEMISTRY OF MATERIALS, 2015, 27 (17) : 6016 - 6021
  • [33] All-Solid-State Rechargeable Lithium Batteries Using LiTi2(PS4)3 Cathode with Li2S-P2S5 Solid Electrolyte
    Shin, Bum Ryong
    Jung, Yoon Seok
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2014, 161 (01) : A154 - A159
  • [34] Tracer diffusion experiments on LISICON and its solid solutions by means of neutron radiography
    Takai, S
    Kurihara, K
    Yoneda, K
    Fujine, S
    Kawabata, Y
    Esaka, T
    [J]. SOLID STATE IONICS, 2004, 171 (1-2) : 107 - 112
  • [35] Understanding Ionic Conductivity Trends in Polyborane Solid Electrolytes from Ab Initio Molecular Dynamics
    Varley, Joel B.
    Kweon, Kyoung
    Mehta, Prateek
    Shea, Patrick
    Heo, Tae Wook
    Udovic, Terrence J.
    Stavila, Vitalie
    Wood, Brandon C.
    [J]. ACS ENERGY LETTERS, 2017, 2 (01): : 250 - 255
  • [36] Roles of phonon amplitude and low-energy optical phonons on superionic conduction
    Wakamura, K
    [J]. PHYSICAL REVIEW B, 1997, 56 (18): : 11593 - 11599
  • [37] Wang Y, 2015, NAT MATER, V14, P1026, DOI [10.1038/nmat4369, 10.1038/NMAT4369]
  • [38] MECHANISM OF FAST ION-TRANSPORT IN SOLIDS
    WHITTINGHAM, MS
    [J]. ELECTROCHIMICA ACTA, 1975, 20 (08) : 575 - 583
  • [39] YAO YFY, 1967, J INORG NUCL CHEM, V29, P2453