A new characterization of the normal law

被引:2
作者
Novak, S. Y. [1 ]
机构
[1] Middlesex Univ, MUBS, London NW4 4BT, England
关键词
characterization; self-normalized random variables;
D O I
10.1016/j.spl.2006.05.020
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We suggest a new characterization of the normal law that highlights a property of self-normalized random variables. We show also that a distribution P is symmetric if and only if self-normalized random variables drawn from P are uncorrelated. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:95 / 98
页数:4
相关论文
共 8 条
[1]   ON AN INEQUALITY AND A RELATED CHARACTERIZATION OF THE NORMAL-DISTRIBUTION [J].
BOROVKOV, AA ;
UTEV, SA .
THEORY OF PROBABILITY AND ITS APPLICATIONS, 1984, 28 (02) :219-228
[2]  
Csörgö M, 2004, FIELDS INST COMMUN, V44, P489
[3]   Comments on a recent limit theorem of Quine [J].
Galambos, J ;
Simonelli, I .
STATISTICS & PROBABILITY LETTERS, 2003, 63 (01) :89-95
[4]  
Kagan A. M., 1973, Characterization problems in mathematical statistics
[5]  
Mikosch T, 2000, ANN STAT, V28, P1427
[6]  
Novak SY, 2004, THEOR PROBAB APPL+, V49, P336
[7]   A central limit theorem for self-normalized products of random variables [J].
Quine, MP .
STATISTICS & PROBABILITY LETTERS, 1999, 43 (02) :137-143
[8]   PROBLEM 62-9 NORMAL FUNCTIONS OF NORMAL RANDOM VARIABLES [J].
SHEPP, L .
SIAM REVIEW, 1964, 6 (04) :459-&