Forecasting Trends in an Ambient Assisted Living Environment Using Deep Learning

被引:0
|
作者
Gingras, Guillaume [1 ]
Adda, Mehdi [1 ]
Bouzouane, Abdenour [2 ]
Ibrahim, Hussein [3 ]
Dallaire, Clemence [4 ]
机构
[1] Univ Quebec Rimouski, Dept Comp Sci, Math, Levis, PQ, Canada
[2] Univ Quebec Chicoutimi, Dept Comp Sci, Math, Chicoutimi, PQ, Canada
[3] Inst Technol Maintenance Ind, Ctr Entrepreneuriat & Valorisat Innovat, Sept Iles, PQ, Canada
[4] Univ Laval, Fac Sci Infirm, Quebec City, PQ, Canada
来源
26TH IEEE SYMPOSIUM ON COMPUTERS AND COMMUNICATIONS (IEEE ISCC 2021) | 2021年
关键词
Forecasting; Time Series Data; Deep Learning; Long Short-Term Memory (LSTM); Convolutional Neural Network (CNN);
D O I
10.1109/ISCC53001.2021.9631404
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Ambient Assisted Living (AAL) aims at assisting people in their Activities of Daily Living (ADL). We have seen an increased interest in their applicability to the rural seniors who are slowly losing their autonomy due to aging and chronic diseases. By deploying intelligent devices in the environment of an individual performing their ADLs, we can gather data in the form of a time series. One research venue is to seek to use forecasting techniques to discover trends and predict future trends that could be used to analyze the health of these individuals. With the recent advances in computational power new deep learning forecasting algorithms have been developed. In this paper, we compare a univariate one-dimensional CNN model and a LSTM model that performs multi-step forecasting for one week ahead. The novel dataset used comes from a set of activity and health related sensors deployed in a small apartment that uses our previously designed analytics architecture. We compare these to a forecasting baseline strategy. Both deep learning approaches increase the forecasting accuracy significantly.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] Stock Market Forecasting Using Deep Learning and Technical Analysis: A Systematic Review
    Li, Audeliano Wolian
    Bastos, Guilherme Sousa
    IEEE ACCESS, 2020, 8 (08): : 185232 - 185242
  • [42] PHILNet: A novel efficient approach for time series forecasting using deep learning
    Jimenez-Navarro, M. J.
    Martinez-Ballesteros, M.
    Martinez-Alvarez, F.
    Asencio-Cortes, G.
    INFORMATION SCIENCES, 2023, 632 : 815 - 832
  • [43] Time Series Forecasting of Software Vulnerabilities Using Statistical and Deep Learning Models
    Kalouptsoglou, Ilias
    Tsoukalas, Dimitrios
    Siavvas, Miltiadis
    Kehagias, Dionysios
    Chatzigeorgiou, Alexander
    Ampatzoglou, Apostolos
    ELECTRONICS, 2022, 11 (18)
  • [44] AIRS: A QGIS plugin for time series forecasting using deep learning models
    Naciri, Hafssa
    Ben Achhab, Nizar
    Ezzaher, Fatima Ezahrae
    Raissouni, Naoufal
    ENVIRONMENTAL MODELLING & SOFTWARE, 2024, 177
  • [45] Forecasting Indoor Air Quality in Mexico City Using Deep Learning Architectures
    Altamirano-Astorga, Jorge
    Gutierrez-Garcia, J. Octavio
    Roman-Rangel, Edgar
    ATMOSPHERE, 2024, 15 (12)
  • [46] Technology Forecasting Using Deep Learning Neural Network: Taking the Case of Robotics
    Gui, Meizeng
    Xu, Xueguo
    IEEE ACCESS, 2021, 9 (53306-53316) : 53306 - 53316
  • [47] Forecasting COVID-19 new cases using deep learning methods
    Xu, Lu
    Magar, Rishikesh
    Farimani, Amir Barati
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 144
  • [48] Solar Energy Forecasting Using Machine Learning and Deep Learning Techniques
    Rajasundrapandiyanleebanon, T.
    Kumaresan, K.
    Murugan, Sakthivel
    Subathra, M. S. P.
    Sivakumar, Mahima
    ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2023, 30 (05) : 3059 - 3079
  • [49] Univariate streamflow forecasting using deep learning networks
    Priya, R. Yamini
    Manjula, R.
    INTERNATIONAL JOURNAL OF HYDROLOGY SCIENCE AND TECHNOLOGY, 2024, 17 (02) : 198 - 219
  • [50] Short time load forecasting for Urmia city using the novel CNN-LTSM deep learning structure
    Ahranjani, Yashar Khanchoopani
    Beiraghi, Mojtaba
    Ghanizadeh, Reza
    ELECTRICAL ENGINEERING, 2025, 107 (01) : 1253 - 1264