On homoclinic and heteroclinic orbits of Chen's system

被引:50
作者
Li, Tiecheng [1 ]
Chen, Guoting
Chen, Guanrong
机构
[1] Tsing Hua Univ, Dept Math Sci, Beijing 100084, Peoples R China
[2] Univ Lille 1, UMR 8524, Lab Paul Painleve, UFR Math, F-59655 Villeneuve Dascq, France
[3] City Univ Hong Kong, Dept Elect Engn, Kowloon, Hong Kong, Peoples R China
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2006年 / 16卷 / 10期
基金
中国国家自然科学基金;
关键词
Chen's system; homoclinic orbit; heteroclinic orbit;
D O I
10.1142/S021812740601663X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the problem of existence of homoclinic and heteroclinic orbits of Chen's system. For the case of 2c > a > c > 0 and b >= 2a, we prove that the system has no homoclinic orbit but has two and only two heteroclinic orbits.
引用
收藏
页码:3035 / 3041
页数:7
相关论文
共 15 条
[1]   Synchronization of Rossler and Chen chaotic dynamical systems using active control [J].
Agiza, HN ;
Yassen, MT .
PHYSICS LETTERS A, 2001, 278 (04) :191-197
[2]   On the generalized Lorenz canonical form [J].
Celikovsky, S ;
Chen, GR .
CHAOS SOLITONS & FRACTALS, 2005, 26 (05) :1271-1276
[3]   On a generalized Lorenz canonical form of chaotic systems [J].
Celikovsky, S ;
Chen, GR .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2002, 12 (08) :1789-1812
[4]   Yet another chaotic attractor [J].
Chen, GR ;
Ueta, T .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1999, 9 (07) :1465-1466
[5]  
Guckenheimer J., 1983, NONLINEAR OSCIL, DOI [10.1007/978-1-4612-1140-2, DOI 10.1007/978-1-4612-1140-2]
[6]   On stability and bifurcation of Chen's system [J].
Li, TC ;
Chen, GR ;
Tang, Y .
CHAOS SOLITONS & FRACTALS, 2004, 19 (05) :1269-1282
[7]  
LORENZ EN, 1963, J ATMOS SCI, V20, P130, DOI 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO
[8]  
2
[9]  
LU JA, 2002, CONTROL THEORY APPL, V19, P308
[10]   Bridge the gap between the Lorenz system and the Chen system [J].
Lü, JH ;
Chen, GR ;
Cheng, DZ ;
Celikovsky, S .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2002, 12 (12) :2917-2926